Gram-negative bacteria express a plethora of efflux pumps that are capable of transporting structurally varied molecules, including antibiotics, out of the bacterial cell. This efflux lowers the intracellular antibiotic concentration, allowing bacteria to survive at higher antibiotic concentrations. Overexpression of some efflux pumps can cause clinically relevant levels of antibiotic resistance in Gram-negative pathogens. This review discusses the role of efflux in resistance of clinical isolates of Gram-negative bacteria, the regulatory mechanisms that control efflux pump expression, the recent advances in our understanding of efflux pump structure and how inhibition of efflux is a promising future strategy for tackling multidrug resistance in Gram-negative pathogens.
The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery.
BackgroundAcinetobacter baumannii is an important nosocomial pathogen that has become increasingly resistant to multiple antibiotics. Genetic manipulation of MDR A. baumannii is useful especially for defining the contribution of each active efflux mechanism in multidrug resistance. Existing methods rely on the use of an antibiotic selection marker and are not suited for multiple gene deletions.ResultsA tellurite-resistant (sacB+, xylE+) suicide vector, pMo130-TelR, was created for deleting the adeFGH and adeIJK operons in two clinical MDR A. baumannii, DB and R2 from Singapore. Using a two-step selection, plasmid insertion recombinants (first-crossover) were selected for tellurite resistance and the deletion mutants (second-crossover) were then selected for loss of sacB. The DNA deletions were verified by PCR while loss of gene expression in the ΔadeFGH, ΔadeIJK and ΔadeFGHΔadeIJK deletion mutants was confirmed using qRT-PCR. The contribution of AdeFGH and AdeIJK pumps to MDR was defined by comparing antimicrobial susceptibilities of the isogenic mutants and the parental strains. The deletion of adeIJK produced no more than eight-fold increase in susceptibility to nalidixic acid, tetracycline, minocycline, tigecycline, clindamycin, trimethoprim and chloramphenicol, while the deletion of adeL-adeFGH operon alone had no impact on antimicrobial susceptibility. Dye accumulation assays using H33342 revealed increased dye retention in all deletion mutants, except for the R2ΔadeFGH mutant, where a decrease was observed. Increased accumulation of ethidium bromide was observed in the parental strains and all pump deletion mutants in the presence of efflux inhibitors. The efflux pump deletion mutants in this study revealed that only the AdeIJK, but not the AdeFGH RND pump, contributes to antimicrobial resistance and dye accumulation in MDR A. baumannii DB and R2.ConclusionsThe marker-less gene deletion method using pMo130-TelR is applicable for creating single and multiple gene deletions in MDR A. baumannii. The adeFGH and adeIJK operons were successfully deleted separately and together using this method and the impact of each efflux pump on antimicrobial resistance could be defined clearly.
ObjectivesOverexpression of efflux pumps in Acinetobacter baumannii is a common mechanism of multidrug resistance in this nosocomial pathogen. Increased efflux pump expression is often assumed from MICs of antibiotics and dyes, without measurement of efflux levels. This study describes a safe, rapid and simple 96-well plate assay that measures the accumulation of a fluorescent dye, Hoechst (H) 33342.MethodsThe growth kinetics of three resistant and three susceptible Singaporean clinical isolates of A. baumannii in the presence of carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and phenylalanine-arginine-β-naphthylamide (PAβN) were studied to determine non-inhibitory concentrations for use in the assay. Accumulation of H33342 was measured in these clinical isolates with and without efflux inhibitors. Accumulation was also measured in an adeB efflux pump deletion mutant and its parental strain to assess the ability of the assay to identify altered efflux in strains lacking efflux pumps. Results were compared with data from accumulation assays with ethidium bromide and norfloxacin.ResultsIncreased accumulation, indicative of reduced efflux, was observed in AB211ΔadeB compared with parental strain AB211. Clinical isolates demonstrated different levels of accumulation of H33342. The addition of both CCCP and PAβN significantly increased the accumulation of H33342. The pattern of norfloxacin accumulation broadly reflected H33342 accumulation. Ethidium bromide showed a different pattern of accumulation in clinical isolates.ConclusionsThe measurement of the intracellular accumulation of H33342 in real time allowed a comparison of efflux activity between strains of A. baumannii.
The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.