The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery.
V olume 7, no. 2, doi:10.1128olume 7, no. 2, doi:10. /mBio.00430-16, 2016. After careful review, it has come to our attention that the text in the abstract of our paper is at variance with one sentence in the article. During writing, revision, and editing, the sense was changed. The revised abstract below shows the correct text. We thank Maria Ramirez for bringing this to our attention.The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted on the ability to form a biofilm on plastic for strain AYE only and on the virulence in Galleria mellonella for Singapore strain 1 only. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC and a pgaC-like gene and increased expression of pil and com genes, whereas loss of AdeB resulted in decreased expression of pil, com, and ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and anti-biofilm discovery. Published 21 June 2016Citation Richmond GE, Evans LP, Anderson MJ, Wand ME, Bonney LC, Ivens A, Chua KL, Webber MA, Sutton JM, Peterson ML, Piddock LJV. 2016. Erratum for Richmond et al., The Acinetobacter baumannii two-component system AdeRS regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner. mBio 7(3): e00852-16.
Generic primers are available for detecting bacterial genes required for almost every reaction of the biological nitrogen cycle, the one notable exception being napA (gene for the molybdoprotein of the periplasmic nitrate reductase) encoding periplasmic nitrate reductases. Using an iterative approach, we report the first successful design of three forward oligonucleotide primers and one reverse primer that, in three separate PCRs, can amplify napA DNA from all five groups of Proteobacteria. All 140 napA sequences currently listed in the NCBI (National Center for Biotechnology Information) database are predicted to be amplified by one or more of these primer pairs. We demonstrate that two pairs of these primers also amplify PCR products of the predicted sizes from DNA isolated from human faeces, confirming their ability to direct the amplification of napA fragments from mixed populations. Analysis of the resulting amplicons by high-throughput sequencing will enable a good estimate to be made of both the range and relative abundance of nitrate-reducing bacteria in any community, subject only to any unavoidable bias inherent in a PCR approach to molecular characterization of a highly diverse target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.