Background: The rapid rise in hospitalizations associated with the Delta-driven COVID-19 resurgence, and the imminent risk of hospital overcrowding, led the Israeli government to initialize a national third (booster) COVID-19 vaccination campaign in early August 2021, offering the BNT162b2 mRNA vaccine to individuals who received their second dose over five months ago. However, the safety of the third (booster) dose has not been fully established yet. Objective: Evaluate the short-term, self-reported and physiological reactions to the third BNT162b2 mRNA COVID-19 (booster) vaccine dose. Design: A prospective observational study, in which participants are equipped with a smartwatch and fill in a daily questionnaire via a dedicated mobile application for a period of 21 days, starting seven days before the vaccination. Setting: An Israel-wide third (booster) vaccination campaign. Participants: A group of 1503 (18+ years of age) recipients of at least one dose of the BNT162b2 vaccine between December 20, 2020, and September 6, 2021, out of a larger cohort of 2,848 prospective study participants. 1,231 of the participants were recipients of the third vaccine dose. Measurements: Daily self-reported questionnaires regarding local and systemic reactions, mood level, stress level, sport duration, and sleep quality. Heart rate and heart rate variability were continuously measured by Garmin Vivosmart 4 smartwatches. Results: Local and systemic reactions reported following the third (booster) dose administration are similar to those reported following the second dose and considerably greater than those reported following the first dose. Our analyses of self-reported well-being indicators as well as the objective heart rate and heart rate variability measures recorded by the smartwatches further support this finding. These measures returned to their baseline levels within three days from inoculation with the third dose. These trends were consistent regardless of age, gender or the existence of an underlying medical condition. Limitations: Participants may not adequately represent the vaccinated population in Israel and elsewhere. Conclusion: Our work further supports the safety of a third COVID-19 BNT162b2 mRNA (booster) vaccine dose from both a subjective and an objective perspective. Primary funding source: European Research Council (ERC) project #949850.
Background Contact mixing plays a key role in the spread of COVID-19. Thus, mobility restrictions of varying degrees up to and including nationwide lockdowns have been implemented in over 200 countries. To appropriately target the timing, location, and severity of measures intended to encourage social distancing at a country level, it is essential to predict when and where outbreaks will occur, and how widespread they will be. Methods We analyze aggregated, anonymized health data and cell phone mobility data from Israel. We develop predictive models for daily new cases and the test positivity rate over the next 7 days for different geographic regions in Israel. We evaluate model goodness of fit using root mean squared error (RMSE). We use these predictions in a five-tier categorization scheme to predict the severity of COVID-19 in each region over the next week. We measure magnitude accuracy (MA), the extent to which the correct severity tier is predicted. Results Models using mobility data outperformed models that did not use mobility data, reducing RMSE by 17.3% when predicting new cases and by 10.2% when predicting the test positivity rate. The best set of predictors for new cases consisted of 1-day lag of past 7-day average new cases, along with a measure of internal movement within a region. The best set of predictors for the test positivity rate consisted of 3-days lag of past 7-day average test positivity rate, along with the same measure of internal movement. Using these predictors, RMSE was 4.812 cases per 100,000 people when predicting new cases and 0.79% when predicting the test positivity rate. MA in predicting new cases was 0.775, and accuracy of prediction to within one tier was 1.0. MA in predicting the test positivity rate was 0.820, and accuracy to within one tier was 0.998. Conclusions Using anonymized, macro-level data human mobility data along with health data aids predictions of when and where COVID-19 outbreaks are likely to occur. Our method provides a useful tool for government decision makers, particularly in the post-vaccination era, when focused interventions are needed to contain COVID-19 outbreaks while mitigating the collateral damage from more global restrictions.
More than 12 billion COVID-19 vaccination shots have been administered as of August 2022, but information from active surveillance about vaccine safety is limited. Surveillance is generally based on self-reporting, making the monitoring process subjective. We study participants in Israel who received their second or third Pfizer BioNTech COVID-19 vaccination. All participants wore a Garmin Vivosmart 4 smartwatch and completed a daily questionnaire via smartphone. We compare post-vaccination smartwatch heart rate data and a Garmin-computed stress measure based on heart rate variability with data from the patient questionnaires. Using a mixed effects panel regression to remove participant-level fixed and random effects, we identify considerable changes in smartwatch measures in the 72 h post-vaccination even among participants who reported no side effects in the questionnaire. Wearable devices were more sensitive than questionnaires in determining when participants returned to baseline levels. We conclude that wearable devices can detect physiological responses following vaccination that may not be captured by patient self-reporting. More broadly, the ubiquity of smartwatches provides an opportunity to gather improved data on patient health, including active surveillance of vaccine safety.
Background Contact mixing plays a key role in the spread of COVID-19. Thus, mobility restrictions of varying degrees up to and including nationwide lockdowns have been implemented in over 200 countries. To appropriately target the timing, location, and severity of measures intended to encourage social distancing at a country level, it is essential to predict when and where outbreaks will occur, and how widespread they will be. Methods We analyze aggregated, anonymized health data and cell phone mobility data from Israel. We develop predictive models for daily new cases and the test positivity rate over the next 7 days for different geographic regions in Israel. We evaluate model goodness of fit using root mean squared error (RMSE). We use these predictions in a five-tier categorization scheme to predict the severity of COVID-19 in each region over the next week. We measure magnitude accuracy (MA), the extent to which the correct severity tier is predicted. Results Models using mobility data outperformed models that did not use mobility data, reducing RMSE by 17.3% when predicting new cases and by 10.2% when predicting the test positivity rate. The best set of predictors for new cases consisted of 1-day lag of past 7-day average new cases, along with a measure of internal movement within a region. The best set of predictors for the test positivity rate consisted of 3-days lag of past 7-day average test positivity rate, along with the same measure of internal movement. Using these predictors, RMSE was 4.812 cases per 100,000 people when predicting new cases and 0.79% when predicting the test positivity rate. MA in predicting new cases was 0.775, and accuracy of prediction to within one tier was 1.0. MA in predicting the test positivity rate was 0.820, and accuracy to within one tier was 0.998. Conclusions Using anonymized, macro-level data human mobility data along with health data aids predictions of when and where COVID-19 outbreaks are likely to occur. Our method provides a useful tool for government decision makers, particularly in the post-vaccination era, when focused interventions are needed to contain COVID-19 outbreaks while mitigating the collateral damage of more global restrictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.