Background Clinical trial guidelines for assessing the safety of vaccines, are primarily based on self-reported questionnaires. Despite the tremendous technological advances in recent years, objective, continuous assessment of physiological measures post-vaccination is rarely performed. Methods We conducted a prospective observational study during the mass vaccination campaign in Israel. 160 participants >18 years who were not previously found to be COVID-19 positive and who received the BNT162b2 COVID-19 (Pfizer BioNTech) vaccine were equipped with an FDA-approved chest-patch sensor and a dedicated mobile application. The chest-patch sensor continuously monitored 13 different cardiovascular, and hemodynamic vitals: heart rate, blood oxygen saturation, respiratory rate, systolic and diastolic blood pressure, pulse pressure, mean arterial pressure, heart rate variability, stroke volume, cardiac output, cardiac index, systemic vascular resistance and skin temperature. The mobile application collected daily self-reported questionnaires on local and systemic reactions. Results We identify continuous and significant changes following vaccine administration in nearly all vitals. Markedly, these changes are observed even in presumably asymptomatic participants who did not report any local or systemic reaction. Changes in vitals are more apparent at night, in younger participants, and in participants following the second vaccine dose. Conclusion the considerably higher sensitivity of wearable sensors can revolutionize clinical trials by enabling earlier identification of abnormal reactions with fewer subjects.
Since the emergence of the SARS-CoV-2 pandemic, various genetic variants have been described. The B.1.1.7 variant, which emerged in England during December 2020, is associated with increased infectivity. Therefore its pattern of spread is of great importance. The Israeli government established three national programs: massive RT-PCR testing, focused surveillance in nursing homes and robust prioritized vaccination with BNT162b2. To define the impact of the aforementioned programs, we analyze data from ∼300,000 RT-PCR samples collected from December 6 th 2020 to February 10 th 2021. We reveal that the B.1.1.7 is 45% (95% CI:20-60%) more transmissible than the wild-type strain, and become the dominant in Israel within 3.5 weeks. Despite the rapid increase in viral spread, focused RT-PCR testing and prioritized vaccination programs are capable of preventing the spread of the B.1.1.7 variant in the elderly. Therefore, proactive surveillance combined with prioritized vaccination are achievable, and reduce severe illness and subsequent death.
Background Applying heavy nationwide restrictions is a powerful method to curtail COVID-19 transmission but poses a significant humanitarian and economic crisis. Thus, it is essential to improve our understanding of COVID-19 transmission, and develop more focused and effective strategies. As human mobility drives transmission, data from cellphone devices can be utilized to achieve these goals. Methods We analyzed aggregated and anonymized mobility data from the cell phone devices of> 3 million users between February 1, 2020, to May 16, 2020 — in which several movement restrictions were applied and lifted in Israel. We integrated these mobility patterns into age-, risk- and region-structured transmission model. Calibrated to coronavirus incidence in 250 regions covering Israel, we evaluated the efficacy and effectiveness in decreasing morbidity and mortality of applying localized and temporal lockdowns (stay-at-home order). Results Poorer regions exhibited lower and slower compliance with the restrictions. Our transmission model further indicated that individuals from impoverished areas were associated with high transmission rates. Considering a horizon of 1–3 years, we found that to reduce COVID-19 mortality, school closure has an adverse effect, while interventions focusing on the elderly are the most efficient. We also found that applying localized and temporal lockdowns during regional outbreaks reduces the overall mortality and morbidity compared to nationwide lockdowns. These trends were consistent across vast ranges of epidemiological parameters, and potential seasonal forcing. Conclusions More resources should be devoted to helping impoverished regions. Utilizing cellphone data despite being anonymized and aggregated can help policymakers worldwide identify hotspots and apply designated strategies against future COVID-19 outbreaks.
Background: Applying heavy nationwide restrictions is a powerful method to curtail COVID-19 transmission but poses a significant humanitarian and economic crisis. Thus, it is essential to improve our understanding of COVID-19 transmission and develop more focused and effective strategies. As human mobility drives transmission, data from cell phone devices can be utilized to achieve these goals. Methods: We analyzed aggregated and anonymized mobility data from the cell-phone devices of>3 million users between February 1, 2020, to May 16, 2020 - in which several movement restrictions were applied and lifted in Israel. We integrated these mobility patterns into age-, risk- and region-structured transmission model. Calibrated to coronavirus incidence in 250 regions covering Israel, we evaluated the efficacy and effectiveness in decreasing mortality of applying localized and temporal lockdowns (stay-at-home order). Results: Poorer regions exhibited lower and slower compliance with the restrictions. Our transmission model further indicated that individuals from poverty areas were associated with high transmission rates. Model projections suggested that, counterintuitively, school closure has an adverse effect and increases COVID-19 mortality in the long run, while interventions focusing on the elderly are the most efficient. We also found that applying localized and temporal lockdowns during regional outbreaks reduce mortality compared to nationwide lockdowns. These trends were consistent across vast ranges of epidemiological parameters, possible seasonal forcing, and even when we assumed that vaccination would be commercially available in 1-3 years. Conclusions: More resources should be devoted to helping impoverished regions. Utilizing cellphone data despite being anonymized and aggregated can help policymakers worldwide identify hotspots and apply designated strategies against future COVID-19 outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.