The transcription factors GATA3 and Pax2 are expressed throughout development of the mouse inner ear. We have used antibodies to study their temporal and spatial expression patterns from embryonic days E8-E16.5. The two factors show reciprocal relationships in the regional patterning of the early otocyst and cellular patterning within the sensory epithelia. GATA3 is expressed in the whole otic placode at E8. In the otocyst at E9.5-10.5, the distribution is lateral and complementary to the medial expression pattern of Pax2. Only Pax2 is expressed in the endolymphatic duct, but both factors are expressed in the cochlea. At E11.5-13.5, GATA3 is expressed strongly in the cochlea, but in the dorsal, vestibular region it is downregulated. In all sensory epithelia, downregulation coincides with sensory innervation. Pax2 is expressed in all sensory and some nonsensory epithelia, but within sensory epithelia at E16.5 it is restricted to hair cells. GATA3 is expressed throughout key periods of cell proliferation, fate determination, and differentiation and is not specifically associated with any of these processes. Expression persists most strongly in the main components of the developing auditory system. These include the auditory sensory epithelium, the afferent and efferent nerves, and the mesenchymal and ectodermal cells in regions that form key parts of the middle and outer ear. GATA3 is thus expressed in functionally distinct groups of cells that integrate to form a complete sensory system. The results suggest that both factors may be involved in tissue compartmentalisation, morphogenesis, and cell signalling.
The function of the zinc finger transcription factor GATA3 was studied in a newly established, conditionally immortal cell line derived to represent auditory sensory neuroblasts migrating from the mouse otic vesicle at embryonic day E10.5. The cell line, US/VOT-33, expressed GATA3, the bHLH transcription factor NeuroD and the POU-domain transcription factor Brn3a, as do auditory neuroblasts in vivo. When GATA3 was knocked down reversibly with antisense oligonucleotides, NeuroD was reversibly down-regulated. Auditory and vestibular neurons form from neuroblasts that express NeuroD and that migrate from the antero-ventral, otic epithelium at E9.5-10.5. On the medial side, neuroblasts and epithelial cells express GATA3 but on the lateral side they do not. At E13.5 most auditory neurons express GATA3 but no longer express NeuroD, whereas vestibular neurons express NeuroD but not GATA3. Neuroblasts expressing NeuroD and GATA3 were located in the ventral, otic epithelium, the adjacent mesenchyme and the developing auditory ganglion. The results suggest that auditory and vestibular neurons arise from different, otic epithelial domains and that they gain their identity prior to migration. In auditory neuroblasts, NeuroD appears to be dependent on the expression of GATA3.
Conditionally immortal cell lines were established from the ventral otocyst of the Immortomouse at embryonic day 10.5 and selected to represent precursors of auditory sensory neural and epithelial cells. Selection was based upon dissection, tissue-specific markers, and expression of the transcription factor GATA3. Two cell lines expressed GATA3 but possessed intrinsically different genetic programs under differentiating conditions. US/VOT-E36 represented epithelial progenitors with potential to differentiate into sensory and nonsensory epithelial cells. US/VOT-N33 represented migrating neuroblasts. Under differentiating conditions in vitro the cell lines expressed very different gene expression profiles. Expression of several cell- and tissue-specific markers, including the transcription factors Pax2, GATA3, and NeuroD, differed between the cell lines in a pattern consistent with that observed between their counterparts in vivo. We suggest that these and other conditionally immortal cell lines can be used to study transient events in development against different backgrounds of cell competence.
We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKBβ, a dramatic increase in Akt1/PKBα protein and relocation of Akt1/PKBα from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27kip1, a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.