The type 1 parathyroid hormone receptor (PTH1R) is a key regulator of calcium homeostasis and bone turnover. Here, we employed SILAC-based quantitative mass spectrometry combined with bioinformatic pathways analysis to examine global changes in protein phosphorylation following short-term stimulation of endogenously expressed PTH1R in osteoblastic cells in vitro. Following 5 min exposure to the conventional agonist, PTH(1-34), we detected significant changes in the phosphorylation of 224 distinct proteins. Kinase substrate motif enrichment demonstrated that consensus motifs for PKA and CAMK2 were the most heavily upregulated within the phosphoproteome, while consensus motifs for mitogen-activated protein kinases were strongly downregulated. Signaling pathways analysis identified ERK1/2 and AKT as important nodal kinases in the downstream network and revealed strong regulation of small GTPases involved in cytoskeletal rearrangement, cell motility, and focal adhesion complex signaling. Our data illustrate the utility of quantitative mass spectrometry in measuring dynamic changes in protein phosphorylation following GPCR activation.
Background
Laboratorians have the opportunity to help minimize the frequency of adverse drug reactions by implementing pharmacogenomic testing and alerting care providers to possible patient/drug incompatibilities before drug treatment is initiated. Methods combining PCR with MALDI-ToF MS have allowed for sensitive, economical, and multiplexed pharmacogenomic testing results to be delivered in a timely fashion.
Method
This study evaluated the analytical performance of the Agena Biosciences iPLEX® PGx 74 panel and a custom iPLEX panel on a MassARRAY MALDI-TOF MS instrument in a clinical laboratory setting. Collectively, these panels evaluate 112 SNVs across 34 genes implicated in drug response. Using commercially available samples (Coriell Biorepository) and in-house extracted DNA, we determined ideal reaction conditions and assessed accuracy, precision, and robustness.
Results
Following protocol optimization, the Agena PGx74 and custom panels demonstrated 100% concordance with the 1000 Genomes Project Database and clinically validated hydrolysis probe genotyping assays. 100% concordance was also observed in all assessments of assay precision when appropriate QC metrics were applied.
Conclusions
Significant development time was required to optimize sample preparation and instrumental analysis and 3 assays were removed due to inconsistent performance. Following modification of the manufacturer’s protocol and instituting manual review of each assay plate, the Agena PGx74 and custom panel constitute a cost-effective, robust, and accurate method for clinical identification of 106 SNVs involved in drug response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.