Together, single-cell technologies and systems biology have been used to investigate previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances, gaps in analytical capacity remain. Machine learning, which has revolutionized biomedical imaging analysis, drug discovery, and systems biology, is an ideal strategy to fill these gaps in single-cell studies. Machine learning additionally has proven to be remarkably synergistic with single-cell data because it remedies unique challenges while capitalizing on the positive aspects of single-cell data. In this review, we describe how systems-biology algorithms have layered machine learning with biological components to provide systems level analyses of single-cell omics data, thus elucidating complex biological mechanisms. Accordingly, we highlight the trifecta of single-cell, systems-biology, and machine-learning approaches and illustrate how this trifecta can significantly contribute to five key areas of scientific research: cell trajectory and identity, individualized medicine, pharmacology, spatial omics, and multi-omics. Given its success to date, the systems-biology, single-cell omics, and machine-learning trifecta has proven to be a potent combination that will further advance biomedical research.
Immune-related processes are important in underpinning the properties of clinical traits such as prognosis and drug response in cancer. The possibility to extract knowledge learned by artificial neural networks (ANNs) from omics data to explain cancer clinical traits is a very attractive subject for novel discovery. Recent studies using a version of ANNs called autoencoders revealed their capability to store biologically meaningful information indicating that autoencoders can be utilized as knowledge discovery platforms aside from their initial assigned use for dimensionality reduction. Here, we devise an innovative weight engineering approach and ANN platform called artificial neural network encoder (ANNE) using an autoencoder and apply it to a breast cancer dataset to extract knowledge learned by the autoencoder model that explains clinical traits. Intriguingly, the extracted biological knowledge in the form of gene–gene associations from ANNE shows immune-related components such as chemokines, carbonic anhydrase, and iron metabolism that modulate immune-related processes and the tumor microenvironment play important roles in underpinning breast cancer clinical traits. Our work shows that biological “knowledge” learned by an ANN model is indeed encoded as weights throughout its neuronal connections, and it is possible to extract learned knowledge via a novel weight engineering approach to uncover important biological insights.
Numerous physiological processes are cyclical, but sampling these processes densely enough to perform frequency decomposition and subsequent analyses can be challenging. Mathematical approaches for decomposition and reconstruction of sparsely and irregularly sampled signals are well established but have been under-utilized in physiological applications. We developed a basis pursuit denoising with polynomial detrending (BPWP) model that recovers oscillations and trends from sparse and irregularly sampled timeseries. We validated this model on a unique dataset of long-term inter-ictal epileptiform discharge (IED) rates from human hippocampus recorded with a novel investigational device with continuous local field potential sensing. IED rates have well established circadian and multiday cycles related to sleep, wakefulness, and seizure clusters. Given sparse and irregular samples of IED rates from multi-month intracranial EEG recordings from ambulatory humans, we used BPWP to compute narrowband spectral power and polynomial trend coefficients and identify IED rate cycles in three subjects. In select cases, we propose that random and irregular sampling may be leveraged for frequency decomposition of physiological signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.