BackgroundQuorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules.Methodology/Principal FindingsBiofilm formation among clinical isolates of Acinetobacter spp. was assessed and the production of signal molecules were detected with Chromobacterium violaceum CV026 biosensor system. Characterisation of autoinducers was carried out by mass spectrometric analysis. We have also reported the identification of an autoinducer synthase gene, abaΙ among the isolates that produce quorum sensing signal molecules and have reported that the mutation in the abaI gene influences their biofilm forming capabilities. Using a microtitre-plate assay it was shown that 60% of the 50 Acinetobacter spp. isolates significantly formed biofilms. Further detection with the biosensor strain showed that some of these isolates produced long chain signal molecules. Mass spectrometric analysis revealed that five of these isolates produced N-decanoyl homoserine lactone and two isolates produced acyl-homoserine lactone with a chain length equal to C12. The abaΙ gene was identified and a tetracycline mutant of the abaΙ gene was created and the inhibition in biofilm formation in the mutant was shown.Conclusions/SignificanceThese data are of great significance as the signal molecules aid in biofilm formation which in turn confer various properties of pathogenicity to the clinical isolates including drug resistance. The use of quorum sensing signal blockers to attenuate bacterial pathogenicity is therefore highly attractive, particularly with respect to the emergence of multi antibiotic resistant bacteria.
Nosocomial infections are major clinical threats to hospitalised patients and represent an important source of morbidity and mortality. It is necessary to develop rapid detection assays of nosocomial pathogens for better prognosis and initiation of antimicrobial therapy in patients. In this study, we present the development of molecular methods for the detection of six common nosocomial pathogens including Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. Conventional multiplex PCR and SYBR Green based real time PCR assays were performed using genus and species specific primers. Blind testing with 300 clinical samples was also carried out. The two assays were found to be sensitive and specific. Eubacterial PCR assay exhibited positive results for 46 clinical isolates from which 43 samples were detected by real time PCR assay. The sensitivity of the assay is about 93.7% in blind test isolates. The PCR results were reconfirmed using the conventional culture method. This assay has the potential to be a rapid, accurate and highly sensitive molecular diagnostic tool for simultaneous detection of Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. This assay has the potential to detect nosocomial pathogens within 5 to 6 hours, helping to initiate infection control measures and appropriate treatment in paediatric and elderly (old aged) patients, pre-and post surgery patients and organ transplant patients and thus reduces their hospitalization duration.
BackgroundAberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions.MethodsHuman retinal endothelial cells were cultured in CSC complete medium in normal (5 mM) or high (25 mM) glucose to mimic a diabetic condition. Reverse transcription PCR and Western Blotting were performed to examine the expression of β1, β2 and β3-adrenergic receptors. For detections, immunocytochemistry was used. Bisulfite sequencing method was used for promoter methylation analysis. Apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used to measure reactive oxygen species (ROS) production in the cells.Resultsβ1 and β3-adrenergic receptors were expressed in retinal endothelial cells while β2-adrenergic receptor was not detectable both at protein and mRNA levels. Hyperglycemia had no significant effect on β1 and β2-adrenergic receptors methylation and expression however β3-adrenergic receptors showed a significantly higher expression (p < 0.05) and methylation (p < 0.01) in high and low glucose concentration respectively. Apoptosis and oxidative stress were inversely correlated with β3-adrenergic receptors methylation with no significant effect on β1 and β2-adrenergic receptors. β2-adrenergic receptor was hypermethylated with halted expression.ConclusionOur study demonstrates that β1 and β3-adrenergic receptors expressed in human retinal endothelial cells. Oxidative stress and apoptosis are inversely proportional to the extent of promoter methylation, suggesting that methylation loss might be due to oxidative stress-induced DNA damage.
Hyperglycemia and insulin resistance are common in many critically ill patients. Hyperglycemia increases the production of reactive oxygen species in cells, stimulates the production of the potent proinflammatory cytokines IL-8 and TNF-alpha, and enhances the expression of haem oxygenase-1, an inducible stress protein. It has been shown that administration of insulin and the semi-essential amino acid glutamine have been beneficial to the septic patient. The aim of our study is to test whether these two molecules, glutamine and insulin used in combination attenuate the proinflammatory responses in endothelial cells which have been triggered by hyperglycaemia. Our results demonstrate that a combination of insulin and glutamine are significantly more effective in reducing the expression of IL-8, TNF-alpha and HO-1 than insulin or glutamine alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.