The effects of mutation of key active-site residues (Arg-47, Tyr-51, in Bacillus megaterium flavocytochrome P450 BM3 were investigated. Kinetic studies on the oxidation of laurate and arachidonate showed that the side chain of Arg-47 contributes more significantly to stabilization of the fatty acid carboxylate than does that of Tyr-51 (kinetic parameters for oxidation of laurate : R47A mutant, K m 859 µM, k cat 3960 min −" ; Y51F mutant, K m 432 µM, k cat 6140 min −" ; wild-type, K m 288 µM, k cat 5140 min −" ). A slightly increased k cat for the Y51F-catalysed oxidation of laurate is probably due to decreased activation energy (∆G ‡ ) resulting from a smaller ∆G of substrate binding. The side chain of Phe-42 acts as a phenyl ' cap ' over the mouth of the substrate-binding channel. With mutant F42A, K m is massively increased and k cat is decreased for oxidation of both laurate (K m 2.08 mM, k cat 2450 min −" ) and arachidonate (K m 34.9 µM, k cat 14 620 min −" ; compared with values of 4.7 µM and 17 100 min −" respectively for wild-type). Amino acid Phe-87 is critical for efficient catalysis. Mutants F87G and F87Y not only exhibit increased K m and decreased k cat values for fatty acid
Site-directed mutants of the phylogenetically conserved phenylalanine residue F393 were constructed in flavocytochrome P450 BM3 from Bacillus megaterium. The high degree of conservation of this residue in the P450 superfamily and its proximity to the heme (and its ligand Cys400) infers an essential role in P450 activity. Extensive kinetic and thermodynamic characterization of mutant enzymes F393A, F393H, and F393Y highlighted significant differences from wild-type P450 BM3. All enzymes expressed to high levels and contained their full complement of heme. While the reduction and subsequent treatment of the mutant P450s with carbon monoxide led to the formation of the characteristic P450 spectra in all cases, the absolute position of the Soret absorption varied across the series WT/F393Y (449 nm), F393H (445 nm), and F393A (444 nm). Steady-state turnover rates with both laurate and arachidonate showed the trend WT > F393Y >> F393H > F393A. Conversely, the trend in the pre-steady-state flavin-to-heme electron transfer was the reverse of the steady-state scenario, with rates varying F393A > F393H >> F393Y approximately wild-type. These data are consistent with the more positive substrate-free [-312 mV (F393A), -332 mV (F393H)] and substrate-bound [-151 mV (F393A), -176 mV (F393H)] reduction potentials of F393A and F393H heme domains, favoring the stabilization of the ferrous-form in the mutant P450s relative to wild-type. Elevation of the heme iron reduction potential in the F393A and F393H mutants facilitates faster electron transfer to the heme. This results in a decrease in the driving force for oxygen reduction by the ferrous heme iron, so explaining lower overall turnover of the mutant P450s. We postulate that the nature of the residue at position 393 is important in controlling the delicate equilibrium observed in P450s, whereby a tradeoff is established between the rate of heme reduction and the rate at which the ferrous heme can bind and, subsequently, reduce molecular oxygen.
The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella.
The active sites of respiratory fumarate reductases are highly conserved, indicating a common mechanism of action involving hydride and proton transfer. Evidence from the X-ray structures of substrate-bound fumarate reductases, including that for the enzyme from Shewanella frigidimarina [Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112], indicates that the substrate is well positioned to accept a hydride from N5 of the FAD. However, the identity of the proton donor has been the subject of recent debate and has been variously proposed to be (using numbering for the S. frigidimarina enzyme) His365, His504, and Arg402. We have used site-directed mutagenesis to examine the roles of these residues in the S. frigidimarina enzyme. The H365A and H504A mutant enzymes exhibited lower k(cat) values than the wild-type enzyme but only by factors of 3-15, depending on pH. This, coupled with the increase in K(m) observed for these enzymes, indicates that His365 and His504 are involved in Michaelis complex formation and are not essential catalytic residues. In fact, examination of the crystal structure of S. frigidimarina fumarate reductase has led to the proposal that Arg402 is the only plausible active site acid. Consistent with this proposal, we report that the R402A mutant enzyme has no detectable fumarate reductase activity. The crystal structure of the H365A mutant enzyme shows that, in addition to the replacement at position 365, there have been some adjustments in the positions of active site residues. In particular, the observed change in the orientation of the Arg402 side chain could account for the decrease in k(cat) seen with the H365A enzyme. These results demonstrate that an active site arginine and not a histidine residue is the proton donor for fumarate reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.