SummaryThe Adenomatous Polyposis Coli (APC) gene is mutated in the majority of colorectal cancers (CRCs). Loss of APC leads to constitutively active WNT signaling, hyperproliferation, and tumorigenesis. Identification of pathways that facilitate tumorigenesis after APC loss is important for therapeutic development. Here, we show that RAC1 is a critical mediator of tumorigenesis after APC loss. We find that RAC1 is required for expansion of the LGR5 intestinal stem cell (ISC) signature, progenitor hyperproliferation, and transformation. Mechanistically, RAC1-driven ROS and NF-κB signaling mediate these processes. Together, these data highlight that ROS production and NF-κB activation triggered by RAC1 are critical events in CRC initiation.
Cytochrome P450 CYP1B1 is a relatively recently identified member of the CYP1 gene family. The purpose of this commentary is to review the regulatory mechanisms, metabolic specificity, and tissue-specific expression of this cytochrome P450 and to highlight its unique properties. The regulation of CYP1B1 involves a variety of both transcriptional and post-transcriptional mechanisms. CYP1B1 can metabolize a range of toxic and carcinogenic chemicals in vitro but in some cases with a unique stereoselectivity. Estradiol 4-hydroxylation appears to be a characteristic reaction catalyzed by human CYP1B1. However, there are considerable species differences regarding the regulation, metabolic specificity, and tissue-specific expression of this P450. In humans CYP1B1 is overexpressed in tumor cells, and this has important implications for tumor development and progression and the development of anticancer drugs specifically activated by CYP1B1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.