Australian farmers and scientists have embraced the use of new pasture legume species more than those in any other country, with 36 annual and 11 perennial legumes having cultivars registered for use. Lucerne (Medicago sativa), white clover (Trifolium repens), and red clover (T. pratense) were introduced by the early European settlers and are still important species in Australia, but several other species, notably annual legumes, have been developed specifically for Australian environments, leading to the evolution of unique farming systems. Subterranean clover (T. subterraneum) and annual medics (Medicago spp.) have been the most successful species, while a suite of new annual legumes, including serradellas (Ornithopus compressus and O. sativus), biserrula (Biserrula pelecinus) and other Trifolium and Medicago species, has expanded the range of legume options. Strawberry clover (T. fragiferum) was the first non-traditional, perennial legume commercialised in Australia. Other new perennial legumes have recently been developed to overcome the soil acidity and waterlogging productivity constraints of lucerne and white clover and to reduce groundwater recharge and the spread of dryland salinity. These include birdsfoot trefoil (Lotus corniculatus), Talish clover (T. tumens), and hairy canary clover (Dorycnium hirsutum). Stoloniferous red clover cultivars and sulla (Hedysarum coronarium) cultivars adapted to southern Australia have also been released, along with a new cultivar of Caucasian clover (T. ambiguum) aimed at overcoming seed production issues of cultivars released in the 1970s. New species under development include the annual legume messina (Melilotus siculus) and the perennial legume narrowleaf lotus (L. tenuis) for saline, waterlogged soils, and the drought-tolerant perennial legume tedera (Bituminaria bituminosa var. albomarginata). Traits required in future pasture legumes include greater resilience to declining rainfall and more variable seasons, higher tolerance of soil acidity, higher phosphorous utilisation efficiency, lower potential to produce methane emissions in grazing ruminants, better integration into weed management strategies on mixed farms, and resistance to new pest and disease threats. Future opportunities include supplying new fodder markets and potential pharmaceutical and health uses for humans and livestock. New species could be considered in the future to overcome constraints of existing species, but their commercial success will depend upon perceived need, size of the seed market, ease of establishment, and management and safety of grazing animals and the environment. Molecular biology has a range of potential applications in pasture legume breeding, including marker-assisted and genomics-assisted selection and the identification of quantitative trait loci and candidate genes for important traits. Genetically modified pasture plants are unlikely to be commercialised until public concerns are allayed. Private seed companies are likely to play an increasingly important role in pasture legume development, particularly of mainstream species, but the higher risk and more innovative breakthroughs are likely to come from the public sector, provided the skills base for plant breeding and associated disciplines is maintained.
Annual pasture legume species can vary more than 3-fold in their critical external phosphorus (P) requirement (i.e. P required for 90% of maximum yield). In this work we investigated the link between root morphology, P acquisition and critical external P requirement among pasture species. The root morphology acclimation of five annual pasture legumes and one grass species to low soil P availability was assessed in a controlled-environment study. The critical external P requirement of the species was low (Dactylis glomerata L., Ornithopus compressus L., Ornithopus sativus Brot.), intermediate (Biserrula pelecinus L., Trifolium hirtum All.) or high (Trifolium subterraneum L.). Root hair cylinder volumes (a function of root length, root hair length and average root diameter) were estimated in order to assess soil exploration and its impact on P uptake. Most species increased soil exploration in response to rates of P supply near or below their critical external P requirement. The legumes differed in how they achieved their maximum root hair cylinder volume. The main variables were high root length density, long root hairs and/or high specific root length. However, total P uptake per unit surface area of the root hair cylinder was similar for all species at rates of P supply below critical P. Species that maximised soil exploration by root morphology acclimation were able to prolong access to P in moderately P-deficient soil. However, among the species studied, it was those with an intrinsic capacity for a high root-hair-cylinder surface area (i.e. long roots and long root hairs) that achieved the lowest critical P requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.