Subterranean clover (Trifolium subterraneum L.) is the most widely sown annual pasture legume species in southern Australia, valued in the livestock and grains industries as a source of high-quality forage and for its ability to fix atmospheric nitrogen. From its initial accidental introduction into Australia in the 19th Century and subsequent commercialisation in the early 1900s, 45 cultivars have been registered in Australia. These consist of 32 cultivars of ssp. subterraneum, eight of ssp. yanninicum, and five of ssp. brachycalycinum and range in flowering time from 77 to 163 days from sowing, enabling the species to be grown in a diversity of rainfall environments, soil types, and farming systems. Eleven of these cultivars are introductions from the Mediterranean region, 15 are naturalised strains collected in Australia, 18 are the products of crossbreeding, and one is derived from mutagenesis. Cultivars developed in Italy have been commercialised for the local market, whereas other cultivars developed in Spain, Portugal, and France have not had commercial seed production. Important traits exploited include: (i) selection for low levels of the oestrogenic isoflavone formononetin, which causes reduced ewe fertility; (ii) increased levels of dormancy imposed by seed-coat impermeability (hard seeds) for cultivars aimed at crop rotations or unreliable rainfall environments; (iii) strong burr-burial ability to maximise seed production; (iv) resistance to important disease pathogens for cultivars aimed at medium- and high-rainfall environments, particularly to Kabatiella caulivora and root rot pathogens; (v) resistance to pests, particularly redlegged earth mites; and (vi) selection for unique leaf markings and other morphological traits (where possible) to aid cultivar identification. Cultivar development has been aided by a large genetic resource of ~10 000 accessions, assembled from its centre of origin in the Mediterranean Basin, West Asia, and the Atlantic coast of Western Europe, in addition to naturalised strains collected in Australia. The development of a core collection of 97 accessions, representing almost 80% of the genetic diversity of the species, and a genetic map, provides a platform for development of future cultivars with new traits to benefit the livestock and grains industries. New traits being examined include increased phosphorous-use efficiency and reduced methane emissions from grazing ruminant livestock. Economic analyses indicate that future trait development should focus on traits contributing to increased persistence and autumn–winter productivity, while other potential traits include increased nutritive value (particularly of senesced material), increased N2 fixation ability, and tolerance to cheap herbicides. Beneficial compounds for animal and human health may also be present within the species for exploitation.
Australian farmers and scientists have embraced the use of new pasture legume species more than those in any other country, with 36 annual and 11 perennial legumes having cultivars registered for use. Lucerne (Medicago sativa), white clover (Trifolium repens), and red clover (T. pratense) were introduced by the early European settlers and are still important species in Australia, but several other species, notably annual legumes, have been developed specifically for Australian environments, leading to the evolution of unique farming systems. Subterranean clover (T. subterraneum) and annual medics (Medicago spp.) have been the most successful species, while a suite of new annual legumes, including serradellas (Ornithopus compressus and O. sativus), biserrula (Biserrula pelecinus) and other Trifolium and Medicago species, has expanded the range of legume options. Strawberry clover (T. fragiferum) was the first non-traditional, perennial legume commercialised in Australia. Other new perennial legumes have recently been developed to overcome the soil acidity and waterlogging productivity constraints of lucerne and white clover and to reduce groundwater recharge and the spread of dryland salinity. These include birdsfoot trefoil (Lotus corniculatus), Talish clover (T. tumens), and hairy canary clover (Dorycnium hirsutum). Stoloniferous red clover cultivars and sulla (Hedysarum coronarium) cultivars adapted to southern Australia have also been released, along with a new cultivar of Caucasian clover (T. ambiguum) aimed at overcoming seed production issues of cultivars released in the 1970s. New species under development include the annual legume messina (Melilotus siculus) and the perennial legume narrowleaf lotus (L. tenuis) for saline, waterlogged soils, and the drought-tolerant perennial legume tedera (Bituminaria bituminosa var. albomarginata). Traits required in future pasture legumes include greater resilience to declining rainfall and more variable seasons, higher tolerance of soil acidity, higher phosphorous utilisation efficiency, lower potential to produce methane emissions in grazing ruminants, better integration into weed management strategies on mixed farms, and resistance to new pest and disease threats. Future opportunities include supplying new fodder markets and potential pharmaceutical and health uses for humans and livestock. New species could be considered in the future to overcome constraints of existing species, but their commercial success will depend upon perceived need, size of the seed market, ease of establishment, and management and safety of grazing animals and the environment. Molecular biology has a range of potential applications in pasture legume breeding, including marker-assisted and genomics-assisted selection and the identification of quantitative trait loci and candidate genes for important traits. Genetically modified pasture plants are unlikely to be commercialised until public concerns are allayed. Private seed companies are likely to play an increasingly important role in pasture legume development, particularly of mainstream species, but the higher risk and more innovative breakthroughs are likely to come from the public sector, provided the skills base for plant breeding and associated disciplines is maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.