A core feature of convective geothermal resource production is wellbore energy flow Q ~ ρC x T x V. E.g., for wellbore fluid of volume heat capacity ρC ~ 4.3MJ/m 3 • o C, temperature T ~ 230 o C, and volumetric flow V ~ 50L/s, wellbore heat energy production is Q~ 50MWth ~ 5MWe. Wellbore fluid flow V =2πr0φv0ℓ for open wellbore length ℓ is given in turn by the spatially variable product crustal porosity times crustal fluid velocity v ≡ φv0 at the wellbore radius r0. For a geothermal wellbore to be productive (nominal Q ~ 5MWe), locally variable bulk inflow rates v = φv0 across crustal volumes of dimension ℓ must be adequate to sustain high wellbore flows (nominal V ~ 50L/s). Wide-ranging crustal well productivity statistics show that few crustal wells flow at these rates. This is not surprising as local bulk flow ~ 10-2 m/s needed for production wellbores is decades greater than ambient bulk fluid flow ~ 10-8-10-7 m/s characteristic of natural convective geothermal systems. Such rare high flow locales must be found. While existing crustal surveys generally fix resource temperatures T with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.