Global increases in environmental noise levels - arising from expansion of human populations, transportation networks, and resource extraction - have catalysed a recent surge of research into the effects of noise on wildlife. Synthesising a coherent understanding of the biological consequences of noise from this literature is challenging. Taxonomic groups vary in auditory capabilities. A wide range of noise sources and exposure levels occur, and many kinds of biological responses have been observed, ranging from individual behaviours to changes in ecological communities. Also, noise is one of several environmental effects generated by human activities, so researchers must contend with potentially confounding explanations for biological responses. Nonetheless, it is clear that noise presents diverse threats to species and ecosystems and salient patterns are emerging to help inform future natural resource-management decisions. We conducted a systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies. Research to date has concentrated predominantly on European and North American species that rely on vocal communication, with approximately two-thirds of the data set focussing on songbirds and marine mammals. The majority of studies documented effects from noise, including altered vocal behaviour to mitigate masking, reduced abundance in noisy habitats, changes in vigilance and foraging behaviour, and impacts on individual fitness and the structure of ecological communities. This literature survey shows that terrestrial wildlife responses begin at noise levels of approximately 40 dBA, and 20% of papers documented impacts below 50 dBA. Our analysis highlights the utility of existing scientific information concerning the effects of anthropogenic noise on wildlife for predicting potential outcomes of noise exposure and implementing meaningful mitigation measures. Future research directions that would support more comprehensive predictions regarding the magnitude and severity of noise impacts include: broadening taxonomic and geographical scope, exploring interacting stressors, conducting larger-scale studies, testing mitigation approaches, standardising reporting of acoustic metrics, and assessing the biological response to noise-source removal or mitigation. The broad volume of existing information concerning the effects of anthropogenic noise on wildlife offers a valuable resource to assist scientists, industry, and natural-resource managers in predicting potential outcomes of noise exposure.
The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
28Human activities have caused a near-ubiquitous and evolutionarily-unprecedented increase in 29 environmental sound levels and artificial night lighting. These stimuli reorganize communities 30 by interfering with species-specific perception of time cues, habitat features, and auditory and 31 visual signals. Rapid evolutionary changes could occur in response to light and noise, given their 32 magnitude, geographical extent, and degree to which they represent unprecedented 33 environmental conditions. We present a framework for investigating anthropogenic light and 34 noise as agents of selection, and as drivers of other evolutionary processes, to influence a range 35 of behavioural and physiological traits, such as phenological characters and sensory and 36 signalling systems. In this context, opportunities abound for understanding contemporary and 37 rapid evolution in response to human-caused environmental change. The overcast night sky radiance in urban areas has been found to be as much as four orders of 55 magnitude larger than in natural settings (Figure 1) [5]. Similarly, increased noise levels affect a 56 sizable proportion of the human population. In Europe for instance, 65% of the population is 57 exposed to ambient sound levels exceeding 55 dB(A) [6], roughly equivalent to constant rainfall. 58Of the land in the contiguous U.S., 88% is estimated to experience elevated sound levels from 59 anthropogenic noise (Figure 1) [7]. These effects are not limited to terrestrial environments; 60 ocean noise levels are estimated to have increased by 12 decibels (an ~16-fold increase in sound 61 intensity) in the past few decades from commercial shipping alone [8], while an estimated 22% 62 of the global coastline is exposed to artificial light [3] and many offshore coral reefs are 63 chronically exposed to artificial lighting from cities, fishing boats, and hydrocarbon extraction 64 [9]. 65The changes in light at night and noise levels are occurring on a global scale similar to 66 well-recognized ecological and evolutionary forces such as land cover and climate change. In 67 4 parallel with research involving climate change [10], much of our understanding of organismal 68 response to noise and light is restricted to short-term behavioural reactions. Organismal 69 responses might be associated with tolerance to these stimuli in terms of habitat use [11,12] Status of research on anthropogenic light and sound in ecology 98Night lighting and noise are highly correlated in many landscapes (e.g., [21]). It is critical to 99 understand whether the selective pressures these stimuli exert are additive, synergistic (Figure 2), 100 or if they mitigate one another. Few studies have examined the influence of each simultaneously 101 (e.g., [21]). In one study, flashing lights combined with boat motor noise suppressed antipredator 102 behaviour in hermit crabs (Coenobita clypeatus) more so than noise alone [22]. Future research 103 should quantify both light and sound simultaneously in the same population. Existing r...
The value of age is well recognized in human societies, where older individuals often emerge as leaders in tasks requiring specialized knowledge, but what part do such individuals play in other social species? Despite growing interest in how effective leadership might be achieved in animal social systems, the specific role that older leaders may play in decision-making has rarely been experimentally investigated. Here, we use a novel playback paradigm to demonstrate that in African elephants ( Loxodonta africana ), age affects the ability of matriarchs to make ecologically relevant decisions in a domain critical to survival—the assessment of predatory threat. While groups consistently adjust their defensive behaviour to the greater threat of three roaring lions versus one, families with younger matriarchs typically under-react to roars from male lions despite the severe danger they represent. Sensitivity to this key threat increases with matriarch age and is greatest for the oldest matriarchs, who are likely to have accumulated the most experience. Our study provides the first empirical evidence that individuals within a social group may derive significant benefits from the influence of an older leader because of their enhanced ability to make crucial decisions about predatory threat, generating important insights into selection for longevity in cognitively advanced social mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.