This paper presents a view of the current state of monitoring track geometry condition from in-service vehicles. It considers technology used to provide condition monitoring; some issues of processing and the determination of location; how things have evolved over the past decade; and what is being, or could/should be done in future research. Monitoring railway track geometry from an in-service vehicle is an attractive proposition that has become a reality in the past decade. However, this is only the beginning. Seeing the same track over and over again provides an opportunity for observing track geometry degradation that can potentially be used to inform maintenance decisions. Furthermore, it is possible to extend the use of track condition information to identify if maintenance is effective, and to monitor the degradation of individual faults such as dipped joints. There are full unattended track geometry measurement systems running on in-service vehicles in the UK and elsewhere around the world, feeding their geometry measurements into large databases. These data can be retrieved, but little is currently done with the data other than the generation of reports of track geometry that exceeds predefined thresholds. There are examples of simpler systems that measure some track geometry parameters more or less directly and accurately, but forego parameters such as gauge. Additionally, there are experimental systems that use mathematics and models to infer track geometry using data from sensors placed on an in-service vehicle. Finally, there are systems that do not claim to measure track geometry, but monitor some other quantity such as ride quality or bogie acceleration to infer poor track geometry without explicitly measuring it.
The development of reliable methods for measuring deflections as trains pass has enabled valuable insights into railway track behaviour to be gained. This is especially useful for problem areas such as transitions from normal ground onto hard substructures and complex track geometries such as switches and crossings.To date, much of the research on transition zone behaviour has focussed on transitions associated with underbridges and other substructures. Switches and crossings have received some attention and level crossings generally very little. This paper describes and discusses the behaviour of a transition onto a level crossing in the south of England, UK. Measurements are presented from both trackside and on-train instruments. It is found that at this crossing, maintenance constraints have resulted in a group of unsupported or hanging sleepers on the approach to the crossing; and that this fault is not effectively rectified by tamping. Comparisons are also made between the way the fault shows up in measurements from trains of the loaded track profile and data from trackside measurements.
Hydrogen used as an energy carrier is a promising alternative to diesel for autonomous railway motive power, but, globally, few prototypes exist. In 2012, the Institution of Mechanical Engineers held the inaugural Railway Challenge, in which the participating teams had to develop, design and construct a locomotive to run on 10.25 inch (260.35 mm) gauge track while meeting certain set design criteria as well as competing in operational challenges. The University of Birmingham Railway Challenge Team’s locomotive design is described in this paper. The vehicle is the UK’s first hydrogen-powered locomotive and is called Hydrogen Pioneer. The drive-system consists of a hydrogen tank, a 1.1 kW proton-exchange-membrane fuel cell stack, a 4.3 kWh battery pack and two 2.2 kW permanent-magnet traction motors. The development of the locomotive, from the original concept to the final design, and the design validation are all presented in this paper. The locomotive completed successfully all challenges through which the proof of the concept of a hydrogen-hybrid locomotive was established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.