A central part of knowing a language is the ability to combine basic linguistic units to form complex representations. While our neurobiological understanding of how words combine into larger structures has significantly advanced in recent years, the combinatory operations that build words themselves remain unknown. Are complex words such as tombstone and starlet built with the same mechanisms that construct phrases from words, such as grey stone or bright star? Here we addressed this with two magnetoencephalography (MEG) experiments, which simultaneously varied demands associated with phrasal composition, and the processing of morphological complexity in compound and suffixed nouns. Replicating previous findings, we show that portions of the left anterior temporal lobe (LATL) are engaged in the combination of modifiers and monomorphemic nouns in phrases (e.g., brown rabbit). As regards compounding, we show that semantically transparent compounds (e.g., tombstone) also engage left anterior temporal cortex, though the spatiotemporal details of this effect differed from phrasal composition. Further, when a phrase was constructed from a modifier and a transparent compound (e.g., granite tombstone), the typical LATL phrasal composition response appeared at a delayed latency, which follows if an initial within-word operation (tomb + stone) must take place before the combination of the compound with the preceding modifier (granite + tombstone). In contrast to compounding, suffixation (i.e., star + let) did not engage the LATL in any consistent way, suggesting a distinct processing route. Finally, our results suggest an intriguing generalization that morpho-orthographic complexity that does not recruit the LATL may block the engagement of the LATL in subsequent phrase building. In sum, our findings offer a detailed spatiotemporal characterization of the lowest level combinatory operations that ultimately feed the composition of full sentences.
Syntax is the engine that allows us to create an infinitude of linguistic expressions, and the construction of syntactic structures, such as noun phrases and verb phrases, is considered a fundamental component of language processing. Nevertheless, insights concerning the neurobiological basis of syntax have remained elusive, in part because it is difficult to isolate syntax from semantic composition. Consequently, many studies of syntax have relied on meaningless artificial stimuli, such as jabberwocky expressions or artificial grammars. However, while pure manipulations of syntax are challenging to design, natural language grammars do have a sparse set of constructions presenting this possibility. Here we examined one such case, English post-nominal adjectives (mountain TALL enough for a strenuous hike), which were contrasted with semantically parallel but structurally simpler noun-adjective sequences in an MEG experiment. We observed a sharp activity increase in the left posterior temporal lobe (PTL) when syntactic composition was more straightforward, approximately 200 ms after adjective onset. The semantic fit between the noun and adjective was also varied, but this affected anterior temporal cortex, consistent with prior work. These findings offer a unique demonstration of the relevance of posterior temporal cortex for syntactic processing in natural language.We also present connectivity evidence that the syntax-related PTL responses were relayed to ipsilateral inferior frontal and anterior temporal regions. The combined results draw an initial picture of the rapid spatio-temporal dynamics of the syntactic and semantic composition network in sentence processing.
Research points to neurofunctional differences underlying fluent speech production in stutterers and non-stutterers. There has been considerably less work focusing on the processes that underlie stuttered speech, primarily due to the difficulty of reliably eliciting stuttering in the unnatural contexts associated with neuroimaging experiments. We used magnetoencephalography (MEG) to test the hypothesis that stuttering events result from global motor inhibition–a “freeze” response typically characterized by increased beta power in nodes of the action-stopping network. We leveraged a novel clinical interview to develop participant-specific stimuli in order to elicit a comparable amount of stuttered and fluent trials. Twenty-nine adult stutterers participated. The paradigm included a cue prior to a go signal, which allowed us to isolate processes associated with stuttered and fluent trials prior to speech initiation. During this pre-speech time window, stuttered trials were associated with greater beta power in the right pre-supplementary motor area, a key node in the action-stopping network, compared to fluent trials. Beta power in the right pre-supplementary area was related to a clinical measure of stuttering severity. We also found that anticipated words identified independently by participants were stuttered more often than those generated by the researchers, which were based on the participants’ reported anticipated sounds. This suggests that global motor inhibition results from stuttering anticipation. This study represents the largest comparison of stuttered and fluent speech to date. The findings provide a foundation for clinical trials that test the efficacy of neuromodulation on stuttering. Moreover, our study demonstrates the feasibility of using our approach for eliciting stuttering during MEG and functional magnetic resonance imaging experiments so that the neurobiological bases of stuttered speech can be further elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.