Ingestion of mycoprotein stimulates skeletal muscle protein synthesis (MPS) rates to a greater extent than concentrated milk protein when matched for leucine content, potentially attributable to the whole-food nature of mycoprotein. We hypothesised that bolus ingestion of mycoprotein as part of its whole food matrix would stimulate MPS rates to a greater extent compared with a leucine matched bolus of protein concentrated from mycoprotein. Twenty-four healthy young (age; 21±2 y, BMI; 24±3 kg.m2) males received primed, continuous infusions of L-[ring-2H5]phenylalanine and completed a bout of unilateral resistance leg exercise before ingesting either 70 g mycoprotein (MYC; 31.4 g protein, 2.5 g leucine; n=12) or 38.2 g of a protein concentrate obtained from mycoprotein (PCM; 28.0 g protein, 2.5 g leucine; n=12). Blood and muscle samples (vastus lateralis) were taken pre- and (4 h) post- exercise/protein ingestion to assess postabsorptive and postprandial myofibrillar protein fractional synthetic rates (FSRs) in resting and exercised muscle. Protein ingestion increased plasma essential amino acid and leucine concentrations (P<0.0001), but more rapidly (both 60 vs 90 min; P<0.0001) and to greater magnitudes (1367 vs 1346 μmol·L−1 and 298 vs 283 μmol·L−1, respectively; P<0.0001) in PCM compared with MYC. Protein ingestion increased myofibrillar FSRs (P<0.0001) in both rested (MYC, Δ0.031±0.007%·h−1 and PCM, Δ0.020±0.008%·h−1) and exercised (MYC, Δ0.057±0.011%·h−1 and PCM, Δ0.058±0.012%·h−1) muscle, with no differences between conditions (P>0.05). Mycoprotein ingestion results in equivalent postprandial stimulation of resting and post-exercise myofibrillar protein synthesis rates irrespective of whether it is consumed within or without its whole-food matrix.
Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg−1·2 hr−1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg−1·2 hr−1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L−1·2 hr−1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L−1·2 hr−1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.