Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.
Myeloproliferative syndromes (MPS) are a heterogeneous subclass of nonlymphoid hematopoietic neoplasms which are considered to be intrinsic to hematopoietic cells. The causes of MPS are largely unknown. Here, we demonstrate that mice deficient for retinoic acid receptor gamma (RARgamma), develop MPS induced solely by the RARgamma-deficient microenvironment. RARgamma(-/-) mice had significantly increased granulocyte/macrophage progenitors and granulocytes in bone marrow (BM), peripheral blood, and spleen. The MPS phenotype continued for the lifespan of the mice and was more pronounced in older mice. Unexpectedly, transplant studies revealed this disease was not intrinsic to the hematopoietic cells. BM from wild-type mice transplanted into mice with an RARgamma(-/-) microenvironment rapidly developed the MPS, which was partially caused by significantly elevated TNFalpha in RARgamma(-/-) mice. These data show that loss of RARgamma results in a nonhematopoietic cell-intrinsic MPS, revealing the capability of the microenvironment to be the sole cause of hematopoietic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.