Parasitic dinoflagellates in the genus Hematodinium are important parasites of marine Crustacea. Outbreaks of these parasites have damaged commercial stocks of Norway lobster Nephrops norvegicus, snow crab Chionoecetes opilio, Tanner crab C. bairdi, American blue crab Callinectes sapidus, and velvet swimming crab Necora puber. Species of Hematodinium can reach high enough levels to regulate their host populations, but mortalities are also centred on the unfished juveniles and females, hosts not normally sampled by fisheries; hence impacts are often underreported. Seasonal prevalences of up to 85% occur annually in many host populations; in effect, these parasites form cryptic blooms in the water column with crabs and other crustaceans at risk of disease. We review the biology and ecology of Hematodinium spp. infections in crustaceans. Included is a comparison of the different infections, a synthesis of what is known, and an attempt to highlight fruitful areas for continued research. DISEASES OF AQUATIC ORGANISMS
Aquatic food security: insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment AbstractFisheries and aquaculture production, imports, exports and equitability of distribution determine the supply of aquatic food to people. Aquatic food security is achieved when a food supply is sufficient, safe, sustainable, shockproof and sound: sufficient, to meet needs and preferences of people; safe, to provide nutritional benefit while posing minimal health risks; sustainable, to provide food now and for future generations; shock-proof, to provide resilience to shocks in production systems and supply chains; and sound, to meet legal and ethical standards for welfare of animals, people and environment. Here, we present an integrated assessment of these elements of the aquatic food system in the United Kingdom, a system linked to dynamic global networks of producers, processors and markets. Our assessment addresses sufficiency of supply from aquaculture, fisheries and trade; safety of supply given biological, chemical and radiation hazards; social, economic and environmental sustainability of production systems and supply chains; system resilience to social, economic and environmental shocks; welfare of fish, people and environment; and the authenticity of food. Conventionally, these aspects of the food system are not assessed collectively, so information supporting our assessment is widely dispersed. Our assessment reveals trade-offs and challenges in the food system that are easily overlooked in sectoral analyses of fisheries, aquaculture, health, medicine, human and fish welfare, safety and environment. We highlight potential benefits of an integrated, systematic and ongoing process to assess security of the aquatic food system and to predict impacts of social, economic and environmental change on food supply and demand.Keywords Ethics, food safety, food security, food system, health, sustainability F I S H and F I S H E R I E S , 2016, 17, 893-938Received 16 Nov 2015 Accepted 21 Jan 2016 Introduction 894The aquatic food system 898Wild-capture fisheries 898Aquaculture production 899Critical elements of food security 900 Sufficient food supply 901Sufficiency of UK supply: production and consumption 901Global production and consumption 903Safe food supply 904 Biological hazards 904Pathogens of human concern 904Marine biotoxins 906 Chemical hazards 906 Contaminants and veterinary residues 906Radiation hazards 908 Sustainable food supply 908Wild-capture fisheries 909Aquaculture production 914Relative impacts of fishing and aquaculture 915Processing 915 Drivers of sustainability 916Shockproof food supply 917Risks to wild-capture production 917Risks to aquaculture production 919Risks to supply chains 920 Sound food supply 921Social welfare and ethics 922Environmental welfare and ethics 924Animal welfare and ethics 925 Food authenticity 926Conclusions 927Acknowledgements 931References 931 IntroductionFood f...
A growing awareness of the diversity and ubiquity of microbes (eukaryotes, prokaryotes, and viruses) associated with larger 'host' organisms has led to the realisation that many diseases thought to be caused by one primary agent are the result of interactions between multiple taxa and the host. Even where a primary agent can be identified, its effect is often moderated by other symbionts. Therefore, the one pathogen-one disease paradigm is shifting towards the pathobiome concept, integrating the interaction of multiple symbionts, host, and environment in a new understanding of disease aetiology. Taxonomically, pathobiomes are variable across host species, ecology, tissue type, and time. Therefore, a more functionally driven understanding of pathobiotic systems is necessary, based on gene expression, metabolic interactions, and ecological processes. Disease in a Microbe-Dominated World The pathobiome (see Glossary) concept arose from human studies in which disruption of a healthpromoting and ecologically stable gut microbiome resulted in dysbiosis: a microbiome community of low-diversity and modified metabolic state, exposing the gut to invasion by, and proliferation of, pathogenic agents [1,2]. Dysbiotic communities can subvert the immune system and lead to further deleterious effects [3]. This concept is being adopted for research into the pathology of other animals and plants because attempts to explain syndromic conditions by identifying a single pathogenic agent are often incomplete (i.e., the one pathogen-one disease paradigm is often insufficient to explain many diseases [4-6]). Pathobiomes differ from those assemblages representing healthy or 'normal' states. What is 'normal' likely encompasses a range of assemblages that need to be understood before a pathobiome can be reliably distinguished from them. There is a lack of consistency in defining 'pathobiome' in the literature, ranging from a single pathogenic agent interacting with its biotic and abiotic environments (e.g., [5]) to the effects of interacting communities of microbes on host health [7]. Our synthesis (Box 1) is based on the effects of multiple symbionts, across all domains of life, on host health. The term 'microbiome' generally excludes eukaryotes; therefore, in this review, we use the term 'symbiome' to describe the whole assemblage of associated organisms excluding the host, and 'symbiont' for individual taxa within that assemblage. This definition is concordant with an inclusive scheme of symbiosis acknowledged in [9], which ranges from neutralism (neutral effect on both partners) to mutual beneficial effects and mutual antagonistic effects, and all other possible combinations of neutral, beneficial, and antagonistic effects. The duration of the association need not necessarily be long-term, as interactions can be effective on even short timescales; great variability in duration of association is both possible and likely. This inclusive definition is not inconsistent with some previous usages of the term, and is required by the large div...
Intensification of food production has the potential to drive increased disease prevalence in food plants and animals. Microsporidia are diversely distributed, opportunistic, and density-dependent parasites infecting hosts from almost all known animal taxa. They are frequent in highly managed aquatic and terrestrial hosts, many of which are vulnerable to epizootics, and all of which are crucial for the stability of the animal–human food chain. Mass rearing and changes in global climate may exacerbate disease and more efficient transmission of parasites in stressed or immune-deficient hosts. Further, human microsporidiosis appears to be adventitious and primarily associated with an increasing community of immune-deficient individuals. Taken together, strong evidence exists for an increasing prevalence of microsporidiosis in animals and humans, and for sharing of pathogens across hosts and biomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.