Several nuclear RFLP loci have been discovered recently that exhibit extensive allele frequency variation among Norwegian coastal and north-east Arctic populations of Atlantic cod Gadus morhua. One of these polymorphisms was detected by hybridizing an anonymous cDNA clone (GM798) against genomic DNA digested with the restriction enzyme DraI. This cDNA clone has now been sequenced and identified as synaptophysin (Syp I), an integral synaptic vesicle membrane protein. Primers were constructed that amplify an intron of the Syp I gene that is polymorphic for the DraI site, thus making it possible to use a PCR-based assay to score the polymorphism. A total of 965 individuals sampled from the Barents Sea, coastal areas and fjords in northern Norway have been analysed for this polymorphism. The results confirm that highly significant differences exist between NE Arctic and coastal cod at the Syp I locus. A cluster analysis revealed a deep split between coastal and Arctic populations and hierarchical F-statistics indicated that about 40% of the total variation was attributable to differences between Arctic and coastal groups. The temporal stability of allele frequencies was assessed by comparing Syp I allele frequencies among samples of juveniles (0 group) captured at specific locations in fjords in consecutive years and among samples of adults and juveniles collected from the same fjord. Samples of juveniles collected in 1994 and 1995 in Malangen were genetically indistinguishable whereas juveniles sampled from Dønnesfjord and Ullsfjorden over the same 2-year period exhibited significant differences. Adults and 0-group individuals collected from the same fjord were found to be genetically indistinguishable in Malangen, but not in Balsfjorden. In addition to detecting large differences among Arctic and coastal groups, the Syp I locus suggests that genetic heterogeneity exists among resident populations of cod in different fjords and that gene flow among populations throughout northern Norway may be considerably lower than previously believed. 1997 The Fisheries Society of the British Isles 1997 The Fisheries Society of the British Isles
The use of molecular data to reconstruct the history of divergence and gene flow between populations of closely related taxa represents a challenging problem. It has been proposed that the long-standing debate about the geography of speciation can be resolved by comparing the likelihoods of a model of isolation with migration and a model of secondary contact. However, data are commonly only fit to a model of isolation with migration and rarely tested against the secondary contact alternative. Furthermore, most demographic inference methods have neglected variation in introgression rates and assume that the gene flow parameter (Nm) is similar among loci. Here, we show that neglecting this source of variation can give misleading results. We analysed DNA sequences sampled from populations of the marine mussels, Mytilus edulis and M. galloprovincialis, across a well-studied mosaic hybrid zone in Europe and evaluated various scenarios of speciation, with or without variation in introgression rates, using an Approximate Bayesian Computation (ABC) approach. Models with heterogeneous gene flow across loci always outperformed models assuming equal migration rates irrespective of the history of gene flow being considered. By incorporating this heterogeneity, the best-supported scenario was a long period of allopatric isolation during the first three-quarters of the time since divergence followed by secondary contact and introgression during the last quarter. By contrast, constraining migration to be homogeneous failed to discriminate among any of the different models of gene flow tested. Our simulations thus provide statistical support for the secondary contact scenario in the European Mytilus hybrid zone that the standard coalescent approach failed to confirm. Our results demonstrate that genomic variation in introgression rates can have profound impacts on the biological conclusions drawn from inference methods and needs to be incorporated in future studies.
Scant scientific attention has been given to the abundance and distribution of marine biota in the face of the lower sea level, and steeper latitudinal gradient in climate, during the ice-age conditions that have dominated the past million years. Here we examine the glacial persistence of Atlantic cod (Gadus morhua) populations using two ecological-niche-models (ENM) and the first broad synthesis of multi-locus gene sequence data for this species. One ENM uses a maximum entropy approach (MAXENT); the other is a new ENM for Atlantic cod, using ecophysiological parameters based on observed reproductive events rather than adult distribution. Both the ENMs were tested for present-day conditions, then used to hindcast ranges at the last glacial maximum (LGM) ca 21 kyr ago, employing climate model data. Although the LGM range of Atlantic cod was much smaller, and fragmented, both the ENMs agreed that populations should have been able to persist in suitable habitat on both sides of the Atlantic. The genetic results showed a degree of trans-Atlantic divergence consistent with genealogically continuous populations on both sides of the North Atlantic since long before the LGM, confirming the ENM results. In contrast, both the ENMs and the genetic data suggest that the Greenland G. morhua population post-dates the LGM.
Inheritance of mitochondrial DNA in animals was thought to be strictly maternal. Recently, evidence for incidental paternal mtDNA leakage was obtained in hybrid crosses of Drosophila and mice. In mice, the frequency of paternal mtDNA contributions was estimated at 10(-4), compared with maternal contributions. The common occurrence in the marine mussel Mytilus of heteroplasmic individuals with two or more types of highly diverged mtDNA molecules was interpreted as strong evidence for biparental mtDNA inheritance by some, but not by others. We report here results from pair-matings involving two species of mussels, Mytilus edulis and Mytilus trossulus. Extensive contribution of paternal mtDNA, amounting to several orders of magnitude higher than that inferred for Drosophila or mice, was observed in both intra- and interspecific crosses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.