Observations from the Clouds and the Earth’s Radiant Energy System (CERES), Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) between 2000 and 2005 are analyzed in order to determine if these data are meeting climate accuracy goals recently established by the climate community. The focus is primarily on top-of-atmosphere (TOA) reflected solar radiances and radiative fluxes. Direct comparisons of nadir radiances from CERES, MODIS, and MISR aboard the Terra satellite reveal that the measurements from these instruments exhibit a year-to-year relative stability of better than 1%, with no systematic change with time. By comparison, the climate requirement for the stability of visible radiometer measurements is 1% decade−1. When tropical ocean monthly anomalies in shortwave (SW) TOA radiative fluxes from CERES on Terra are compared with anomalies in Photosynthetically Active Radiation (PAR) from SeaWiFS—an instrument whose radiance stability is better than 0.07% during its first six years in orbit—the two are strongly anticorrelated. After scaling the SeaWiFS anomalies by a constant factor given by the slope of the regression line fit between CERES and SeaWiFS anomalies, the standard deviation in the difference between monthly anomalies from the two records is only 0.2 W m−2, and the difference in their trend lines is only 0.02 ± 0.3 W m−2 decade−1, approximately within the 0.3 W m−2 decade−1 stability requirement for climate accuracy. For both the Tropics and globe, CERES Terra SW TOA fluxes show no trend between March 2000 and June 2005. Significant differences are found between SW TOA flux trends from CERES Terra and CERES Aqua between August 2002 and March 2005. This discrepancy is due to uncertainties in the adjustment factors used to account for degradation of the CERES Aqua optics during hemispheric scan mode operations. Comparisons of SW TOA flux between CERES Terra and the International Satellite Cloud Climatology Project (ISCCP) radiative flux profile dataset (FD) RadFlux product show good agreement in monthly anomalies between January 2002 and December 2004, and poor agreement prior to this period. Commonly used statistical tools applied to the CERES Terra data reveal that in order to detect a statistically significant trend of magnitude 0.3 W m−2 decade−1 in global SW TOA flux, approximately 10 to 15 yr of data are needed. This assumes that CERES Terra instrument calibration remains highly stable, long-term climate variability remains constant, and the Terra spacecraft has enough fuel to last 15 yr.
Cloud's and the Earth's Radiant Energy System (CERES) is an investigation into the role of clouds and radiation in the Earth's climate system. Four CERES scanning thermistor bolometer instruments are currently in orbit. Flight model 1 (FM1) and 2 (FM2) are aboard the Earth Observing System (EOS) Terra satellite and FM3 and FM4 are aboard the EOS Aqua satellite. Each CERES instrument measures in three broadband radiometric regions: the shortwave (SW 0.3 − 5µm), total (0.3− > 100µm), and window (8 − 12µm). It has been found that both CERES instruments on the Terra platform imply that the SW flux scattered from the Earth had dropped by up to 2% from 2000 to 2004. No climatological explanation for this drop could be found, suggesting the cause was a drift in both the Terra instruments. However, the onboard calibration lamps for the SW channels do not show a change in gain of this magnitude. Experience from other satellite missions has shown that optics in the orbital environment can become contaminated, severely reducing their transmission of ultra-violet (UV) radiation. Since the calibration lamps emit little radiance in the UV spectral region it was suggested that contaminates could be responsible for an undetectable 'spectral darkening' of the CERES SW channel optics and hence the apparent drop in SW flux. Further evidence for this was found by looking at the comparison between simultaneous measurements made by FM1 and FM2. The proposed mechanisms for contaminant build up would not apply to a CERES instrument operating in the normal cross track scan mode. Indeed it was found from the comparison between CERES instruments on Terra that the response of the instrument operating in rotating azimuth plane (RAPS) mode consistently dropped relative to the other cross track instrument. Since at all times one of the instruments operates in cross track mode, where it is not subject to spectral darkening, it allowed that unit to be used as a calibration standard from which the darkening of the other RAPS instrument can be measured. A table of adjustment coefficients to compensate for this spectral darkening are therefore derived in this paper. These figures are designed to be multiplied by SW fluxes or radiances produced in the climate community using Edition 2 CERES data. SW CERES measurements that have been revised using these coefficients are therefore to be referred to as ERBE-like Edition2 Rev1 or SSF Edition2B Rev1 data in future literature. Current work to fully characterize the effect of spectral darkening on the instrument spectral response before the release of Edition 3 data is also described.
A need to gain more confidence in computer model predictions of coming climate change has resulted in greater analysis of the quality of orbital Earth radiation budget (ERB) measurements being used today to constrain, validate, and hence improve such simulations. These studies conclude from time series analysis that for around a quarter of a century, no existing satellite ERB climate data record is of a sufficient standard to partition changes to the Earth from those of un-tracked and changing artificial instrumentation effects. This led to the creation of the Moon and Earth Radiation Budget Experiment (MERBE), which instead takes existing decades old climate data to a higher calibration standard using thousands of scans of Earth's Moon. The Terra and Aqua satellite ERB climate records have been completely regenerated using signal-processing improvements, combined with a substantial increase in precision from more comprehensive in-flight spectral characterization techniques. This study now builds on previous Optical Society of America work by describing new Moon measurements derived using accurate analytical mapping of telescope spatial response. That then allows a factor of three reduction in measurement noise along with an order of magnitude increase in the number of retrieved independent lunar results. Given decadal length device longevity and the use of solar and thermal lunar radiance models to normalize the improved ERB results to the International System of Units traceable radiance scale of the "MERBE Watt," the same established environmental time series analysis techniques are applied to MERBE data. They evaluate it to perhaps be of sufficient quality to immediately begin narrowing the largest of climate prediction uncertainties. It also shows that if such Terra/Aqua ERB devices can operate into the 2020s, it could become possible to halve these same uncertainties decades sooner than would be possible with existing or even planned new observing systems.
It is essential to maintain global measurements of the earth radiation budget (ERB) from space, the scattered solar and emitted thermal radiative fluxes leaving the planet. These are required for the purpose of validating current climate model predictions of the planet's future response to anthropogenic greenhouse gas forcing. The measurement accuracy and calibration stability required to resolve the magnitude of modelsuggested cloud-climate feedbacks on the ERB have recently been estimated. The suggestion is for ERB data to strive for a calibration stability of 60.3% decade 21 for scattered solar, 60.5% decade 21 for emitted thermal, and an overall absolute accuracy of 1 W m 22 . The Clouds and the Earth's Radiant Energy System (CERES) is currently the only satellite program to make global ERB measurements, beginning in January 1998. However, the new climate calibration standards are beyond those originally specified by the NASA CERES program for its edition 2 data release. Furthermore, the CERES instrument optics have been discovered to undergo substantial in-flight degradation because of contaminant issues. This is not directly detectable by using established calibration methods. Hence, user-applied revisions for edition 2 shortwave (SW) data were derived to compensate for this effect, which is described as ''spectral darkening.'' Also, an entirely new in-flight calibration protocol has been developed for CERES that uses deep convective cloud albedo as a primary solar wavelength stability metric. This is then combined with a sophisticated contamination mobilization/ polymerization model. The intention is to assign spectral coloration to any optical degradation occurring to the different CERES Earth observing telescopes. This paper quantifies the stability of revised edition 2 data. It also calculates stability, which the new protocols could give CERES measurements if used. The conclusion is that the edition 2 revisions restore the originally specified stability of CERES SW data. It is also determined that the climate calibration stability goals are reachable by using the new in-flight methodologies presented in this paper. However, this will require datasets of longer than approximately 10 yr. It will also require obtaining regular raster scans of the Moon by all operational CERES instruments.
It is estimated that in order to best detect real changes in the Earth's climate system, space based instrumentation measuring the Earth Radiation Budget (ERB) must remain calibrated with a stability of 0.3% per decade. Such stability is beyond the specified accuracy of existing ERB programs such as the Clouds and the Earth's Radiant Energy System (CERES, using three broadband radiometric scanning channels: the shortwave 0.3 − 5µm, total 0.3− > 100µm, and window 8 − 12µm). It has been shown that when in low earth orbit, optical response to blue/UV radiance can be reduced significantly due to UV hardened contaminants deposited on the surface of the optics. Since typical onboard calibration lamps do not emit sufficient energy in the blue/UV region, this darkening is not directly measurable using standard internal calibration techniques. This paper describes a study using a model of contaminant deposition and darkening, in conjunction with in-flight vicarious calibration techniques, to derive the spectral shape of darkening to which a broadband instrument is subjected. Ultimately the model uses the reflectivity of Deep Convective Clouds as a stability metric. The results of the model when applied to the CERES instruments on board the EOS Terra satellite are shown. Given comprehensive validation of the model, these results will allow the CERES spectral responses to be updated accordingly prior to any forthcoming data release in an attempt to reach the optimum stability target that the climate community requires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.