Train safety and operational efficiency are enhanced by the ability to understand the behavior of trains under varying conditions. Under the direction of the Federal Railroad Administration (FRA), a longitudinal train dynamics and operation simulation software — Train Energy and Dynamics Simulator (TEDS) — has been developed. TEDS is capable of modeling modern train operations and equipment, and is an effective tool for studying train operations safety and performance as affected by equipment, train makeup, train handling, track conditions, operating practices and environmental conditions. TEDS simulates the dynamics of longitudinal train action and incorporates the dynamic effects of various different types of draft gears and end-of-car cushioning units including mismatched devices coupled together, the transient response of locomotive tractive and dynamic braking effort, as well as a fluid dynamic representation of the air brake system with the capability to model conventional pneumatic and ECP brake systems. The capabilities of TEDS are described and demonstrated with several examples. The validation effort undertaken is described at both the component and system level. Comparisons of TEDS simulations of impact tests with the test results are shown to verify the draft gear and end-of-car cushioning unit models. The air brake model predictions are verified by comparing brake rack test results to TEDS simulations of braking behavior.
There is a significant increase in the transportation by rail of hazardous materials such as crude oil and ethanol in the North American market. Several derailment incidents associated with such transport have led to a renewed focus on improving the performance of tank cars against the potential for puncture under derailment conditions. Proposed strategies for improving puncture resistance have included design changes to tank cars, as well as, operational considerations such as reduced speeds. Given the chaotic nature of derailment events, it has been difficult to quantify globally, the overall ‘real-world’ safety improvement resulting from any given proposed change. A novel and objective methodology for quantifying and characterizing reductions in risk that result from changes to tank car designs or the tank car operating environment is outlined in this paper. The proposed methodology captures several parameters that are relevant to tank car derailment performance, including multiple derailment scenarios, derailment dynamics, impact load distributions, impactor sizes, operating conditions, tank car designs, etc., and combines them into a consistent probabilistic framework to estimate the relative merit of proposed mitigation strategies.
Critical derailment incidents associated with crude oil and ethanol transport have led to a renewed focus on improving the performance of tank cars against the potential for puncture under derailment conditions. Proposed strategies for improving puncture performance have included design changes to tank cars as well as operational considerations, such as reduced speeds and upgraded brake systems. In a prior paper on this topic, the authors conceptualized a novel and objective methodology for quantifying and characterizing the reductions in risk that result from changes to tank car design or to the tank car operating environment. This paper describes an extension of that effort to include additional derailment cases, additional operating speeds, considerations for alternate train configurations, such as Distributed Power (DP) and Electrically Controlled Pneumatic (ECP) brakes, as well as options for component level studies. In essence, the developed methodology considers key elements that are relevant to tank car derailment performance and combines these elements into a consistent probabilistic framework to estimate the relative merit of proposed mitigation strategies. The relevant elements considered include variations in the derailment scenarios, chaotic derailment dynamics, the distribution of impact loads and impactor sizes, various operating speeds, brake system differences, and variations in tank car design. The paper also provides an overview of the validation efforts which suggest that the gross dynamics of a tank car train derailment, and the resulting puncture performance of the tank cars, are captured well by this methodology.
The Train Energy and Dynamics Simulator (TEDS) is state-of-the-art simulation software, developed by the Federal Railroad Administration (FRA), to study train operation safety and performance as affected by a wide variety of rolling stock, track, train handling and operating configurations. As part of developing TEDS, existing and published data on braking, draft systems and train performance were used for initial validation of TEDS. This paper describes two revenue service tests conducted to further validate TEDS. The first test was on a loaded unit train, while the second test was on a mixed train with empty and loaded cars and included distributed power in which the remote brake valve was cut in. Collected test data included throttle position, train speed, locomotive power, brake system pressures and coupler forces. Several events from these tests, representing typical train operating scenarios, were selected for comparison with TEDS predicted results. The TEDS predictions matched the measured test data for all of the scenarios simulated, further validating the performance of the software and offering additional assurance on the use of TEDS for simulating performance and safety critical train dynamic behavior.
Longitudinal dynamics influence several measures of train performance, including schedules and energy efficiency, stopping distances, run-in/run-out forces, etc. Therefore, an effective set of tools for studying longitudinal dynamics is essential to improving the safety and performance of train operations. Train Energy and Dynamics Simulator (TEDS) is a state-of-the-art software program designed and developed by the Federal Railroad Administration (FRA), for studying and simulating train safety and performance, and can be used for modeling train performance under a wide variety of equipment, track, and operating configurations [1]. Several case studies and real-world applications of TEDS, including the investigation of multiple train make-up and train handling related derailments, a study of train stopping distances, evaluations of the safety benefits of Electronically Controlled Pneumatic (ECP) brakes, Distributed Power operations, and a study of alternate train handling methodologies are described in this paper. These studies demonstrate the effectiveness of using the appropriate simulation tools to quantify and enhance a better understanding of train dynamics, and the resultant safety benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.