We report here on the derivation of two hES cell lines presumed to be genetically normal (VUB01 and VUB02) and three hES cell lines carrying mutations for myotonic dystrophy type 1 (VUB03_DM1), cystic fibrosis (VUB04_CF) and Huntington disease (VUB05_HD).
The contribution of the POU domain, class 5, transcription factor-1 (POU5F1) in maintaining totipotency in human embryonic stem cells (hESCs) has been repeatedly proven. In humans, two isoforms are encoded: POU5F1_iA and POU5F1_iB. So far, no discrimination has been made between the isoforms in POU5F1 studies, and it is unknown which isoform contributes to the undifferentiated phenotype.Using immunocytochemistry, expression of POU5F1_iA and POU5F1_iB was examined in hESCs and all stages of human preimplantation development to look for differences in expression, biological activity, and relation to totipotency. POU5F1_iA and POU5F1_iB displayed different temporal and spatial expression patterns. During human preimplantation development, a significant POU5F1_iA expression was seen in all nuclei of compacted embryos and blastocysts and a clear POU5F1_iB expression was detected from the four-cell stage onwards in the cytoplasm of all cells. The cytoplasmic localization might imply no or other biological functions beyond transcription activation for POU5F1_iB. The stemness properties of POU5F1 can be assigned to POU5F1_iA because hESCs expressed POU5F1_iA but not POU5F1_iB. However, POU5F1_iA is not the appropriate marker to identify totipotent cells, because POU5F1_iA was also expressed in the nontotipotent trophectoderm and was not expressed in zygotes and early cleavage stage embryos, which are assumed to be totipotent. The expression pattern of POU5F1_iA may suggest that POU5F1_iA alone cannot sustain totipotency and that coexpression with other stemness factors might be the key to totipotency.
The transcription factor OCT-4 is regarded as a critical factor in controlling mammalian early embryonic development because of its role in toti-/pluripotency. In human preimplantation embryos, OCT-4 studies are limited to RNA analysis of abnormally developing embryos. This study thoroughly investigated the expression pattern of OCT-4 throughout the human preimplantation development. Expression was examined by single-cell RT-PCR or indirect immunocytochemistry in 36 single oocytes of various maturity and 112 normally developing preimplantation embryos at the level of single blastomeres, morulas, blastocysts, or inner cell mass (ICM) and trophectoderm (TE) samples. Oocytes and cleavage stage embryos revealed a variable OCT-4 expression pattern, concomitant with a pure cytoplasmic localization of the protein. During compaction, the variability in expression faded away indicating embryonic OCT-4 expression and the protein appeared in the nucleus implying biological activity. In blastocysts, OCT-4 transcripts and proteins were present in the ICM and the TE. At protein level, blastocysts displayed different spatial expression patterns within a cell for the splice variants of OCT-4, which may endow them with different functional properties. As OCT-4 transcripts were also found in various differentiated cells, the presence of OCT-4 transcripts or proteins may not be sufficient for identifying undifferentiated cell lines in humans. Further, we suggest to examine the localization of OCT-4 proteins within a cell rather than to look for the presence and/or amount of transcripts.
We conclude that the protein expression patterns of markers that define stemness in ESC do not identify the totipotent cells in human preimplantation embryos. Assessing the presence of KRT18 proteins implied that the outer cells of compacting embryos have probably lost their totipotent competence prior to any visible differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.