Immucillin-H [ImmH; (1S)-1-(9-deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol] is a 23 pM inhibitor of bovine purine nucleoside phosphorylase (PNP) specifically designed as a transition state mimic [Miles, R. W., Tyler, P. C., Furneaux, R. H., Bagdassarian, C. K., and Schramm, V. L. (1998) Biochemistry 37, 8615-8621]. Cocrystals of PNP and the inhibitor are used to provide structural information for each step through the reaction coordinate of PNP. The X-ray crystal structure of free ImmH was solved at 0.9 A resolution, and a complex of PNP.ImmH.PO(4) was solved at 1.5 A resolution. These structures are compared to previously reported complexes of PNP with substrate and product analogues in the catalytic sites and with the experimentally determined transition state structure. Upon binding, ImmH is distorted to a conformation favoring ribosyl oxocarbenium ion formation. Ribosyl destabilization and transition state stabilization of the ribosyl oxocarbenium ion occur from neighboring group interactions with the phosphate anion and the 5'-hydroxyl of the ribosyl group. Leaving group activation of hypoxanthine involves hydrogen bonds to O6, N1, and N7 of the purine ring. Ordered water molecules provide a proton transfer bridge to O6 and N7 and permit reversible formation of these hydrogen bonds. Contacts between PNP and catalytic site ligands are shorter in the transition state analogue complex of PNP.ImmH.PO(4) than in the Michaelis complexes of PNP.inosine.SO(4) or PNP.hypoxanthine.ribose 1-PO(4). Reaction coordinate motion is dominated by translation of the carbon 1' of ribose between relatively fixed phosphate and purine groups. Purine and pyrimidine phosphoribosyltransferases and nucleoside N-ribosyl hydrolases appear to operate by a similar mechanism.
Immucillin-H (ImmH) and immucillin-G (ImmG) were previously reported as transition-state analogues for bovine purine nucleoside phosphorylase (PNP) and are the most powerful inhibitors reported for the enzyme (K(i) = 23 and 30 pM). Sixteen new immucillins are used to probe the atomic interactions that cause tight binding for bovine PNP. Eight analogues of ImmH are identified with equilibrium dissociation constants of 1 nM or below. A novel crystal structure of bovine PNP-ImmG-PO(4) is described. Crystal structures of ImmH and ImmG bound to bovine PNP indicate that nearly every H-bond donor/acceptor site on the inhibitor is fully engaged in favorable H-bond partners. Chemical modification of the immucillins is used to quantitate the energetics for each contact at the catalytic site. Conversion of the 6-carbonyl oxygen to a 6-amino group (ImmH to ImmA) increases the dissociation constant from 23 pM to 2.6 million pM. Conversion of the 4'-imino group to a 4'-oxygen (ImmH to 9-deazainosine) increases the dissociation constant from 23 pM to 2.0 million pM. Substituents that induce small pK(a) changes at N-7 demonstrate modest loss of affinity. Thus, 8-F or 8-CH(3)-substitutions decrease affinity less than 10-fold. But a change in the deazapurine ring to convert N-7 from a H-bond donor to a H-bond acceptor (ImmH to 4-aza-3-deaza-ImmH) decreases affinity by >10(7). Introduction of a methylene bridge between 9-deazahypoxanthine and the iminoribitol (9-(1'-CH(2))-ImmH) increased the distance between leaving and oxacarbenium groups and increased K(i) to 91 000 pM. Catalytic site energetics for 20 substitutions in the transition-state analogue are analyzed in this approach. Disruption of the H-bond pattern that defines the transition-state ensemble leads to a large decrease in binding affinity. Changes in a single H-bond contact site cause up to 10.1 kcal/mol loss of binding energy, requiring a cooperative H-bond pattern in binding the transition-state analogues. Groups involved in leaving group activation and ribooxacarbenium ion stabilization are central to the H-bond network that provides transition-state stabilization and tight binding of the immucillins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.