The extended Bouc-Wen differential model is one of the most widely accepted phenomenological models of hysteresis in mechanics. It is routinely used in the characterization of nonlinear damping and in system identification. In this paper, the differential model of hysteresis is carefully reexamined and two significant issues are uncovered. First, it is shown that the unspecified parameters of the model are functionally redundant. One of the parameters can be eliminated through suitable transformations in the parameter space. Second, local and global sensitivity analyses are conducted to assess the relative sensitivity of each model parameter. Through extensive Monte Carlo simulations, it is found that some parameters of the hysteretic model are rather insensitive. If the values of these insensitive parameters are fixed, a greatly simplified model is obtained.
Greater urbanization does not only mean higher concentrations of population and economic activities, but also increasing complexity and infrastructure interdependencies in the delivery of critical urban services such as energy, water, transport and communication. This paper reviews the current literature in these areas and identifies critical research and development challenges from the perspective-and for the benefit-of key stakeholders, considering their primary decision goals and context. From this vantage point, the critical evaluation framework is extended to include a classification of disruptions and extreme events and an overview of infrastructure modeling approaches and broader socioeconomic impacts assessment methods. Mapping the range of modeling and assessment methods against different decision contexts, critical gaps in knowledge and tools are identified to support the latter. Deep uncertainties characterize the challenge as each major component in the information and decision-making chain-from the frequency and intensity of a disruptive event, to assessing the first-order and immediate impacts of an infrastructure failure, to estimating the nature, extent and impact of cascading failuresmultiplies the uncertainties. The emerging research challenges to deal with these interdependencies and uncertainties are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.