Social species, by definition, form organizations that extend beyond the individual. These structures evolved hand in hand with behavioral, neural, hormonal, cellular, and genetic mechanisms to support them because the consequent social behaviors helped these organisms survive, reproduce, and care for offspring sufficiently long that they too reproduced. Social isolation represents a lens through which to investigate these behavioral, neural, hormonal, cellular, and genetic mechanisms. Evidence from human and nonhuman animal studies indicates that isolation heightens sensitivity to social threats (predator evasion) and motivates the renewal of social connections. The effects of perceived isolation in humans share much in common with the effects of experimental manipulations of isolation in nonhuman social species: increased tonic sympathetic tonus and HPA activation, and decreased inflammatory control, immunity, sleep salubrity, and expression of genes regulating glucocorticoid responses. Together, these effects contribute to higher rates of morbidity and mortality in older adults.
The concept of autonomic balance views autonomic states along a bipolar continuum from sympathetic (S) to parasympathetic (P) dominance, whereas regulatory capacity models emphasize overall autonomic flexibility as a marker of the capacity for regulation. These two concepts were evaluated for their utility in characterizing patterns of autonomic control. Measures of P (high frequency heart rate variability, HF) and S (pre-ejection period, PEP) cardiac control were obtained. A measure of cardiac autonomic balance (CAB) was derived as the difference in the normalized P index minus the S index, and a measure of cardiac autonomic regulation (CAR) was derived as the normalized P index plus the S index. Results reveal that CAR, but not CAB, was a significant predictor of the prior occurrence of a myocardial infarction, net of demographic and other variables, whereas CAB, but not CAR, was a significant predictor of concurrent diabetes.
The B point on the impedance cardiograph waveform corresponds to the opening of the aortic valve and is an important parameter for calculating systolic time intervals, stroke volume, and cardiac output. Identifying the location of the B point is sometimes problematic because the characteristic upstroke that serves as a marker of this point is not always apparent. Here is presented a reliable method for B point identification, based on the consistent relationship between the R to B interval (RB) and the interval between the R-wave and the peak of the dZ/dt function (RZ). The polynomial function relating RB to RZ (RB = 1.233RZ - 0.0032RZ(2) - 31.59) accounts for 90%-95% of the variance in the B point location across ages and gender and across baseline and stress conditions. This relation affords a rapid approximation to B point measurement that, in noisy or degraded signals, is superior to visual B point identification and to a derivative-based estimate.
The physiological link between neuropathic pain and depression remains unknown despite a high comorbidity between these two disorders. A mouse model of spared nerve injury (SNI) was used to test the hypothesis that nerve injury precipitates depression through the induction of inflammation in the brain, and that prior exposure to stress exacerbates the behavioral and neuroinflammatory consequences of nerve injury. As compared with sham surgery, SNI induced mechanical allodynia, and significantly increased depressive-like behavior. Moreover, SNI animals displayed increased interleukin-1β (IL-1β) gene expression within the frontal cortex and concurrent increases in the expression of glial fibrillary acidic protein (GFAP) within the periaqueductal grey (PAG). Additionally, exposure to chronic restraint stress for 2 weeks before SNI exacerbated mechanical allodynia and depressive-like behavior, and resulted in an increase in IL-1β gene expression in the frontal cortex and brain-derived neurotrophic factor (BDNF) gene expression in PAG. Treatment with metyrapone (MET), a corticosteroid synthesis inhibitor, before stress eliminated deleterious effects of chronic stress on SNI. Finally, this study showed that interference with IL-1β signaling, through administration of IL-1 receptor antagonist (IL-1ra), ameliorated the effects of neuropathic pain on depressive-like behavior. Taken together, these data suggest that peripheral nerve injury leads to increased cytokine expression in the brain, which in turn, contributes to the development of depressive-like behavior. Furthermore, stress can facilitate the development of depressive-like behavior after nerve injury by promoting IL-1β expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.