Anophthalmia and pituitary gland hypoplasia are both debilitating conditions where the underlying genetic defect is unknown in the majority of cases. We identified a patient with bilateral anophthalmia and absence of the optic nerves, chiasm and tracts, as well as pituitary gland hypoplasia and ear anomalies with a de novo apparently balanced chromosomal translocation, 46,XY,t(3;14)(q28;q23.2). Translocation breakpoint analysis using FISH and high-resolution microarray comparative genomic hybridization (CGH) has identified a 9.66 Mb deleted region on the long arm of chromosome 14 which includes the genes BMP4, OTX2, RTN1, SIX6, SIX1, and SIX4. Three other patients with interstitial deletions involving 14q22-23 have been described, all with bilateral anophthalmia, pituitary abnormalities, ear anomalies, and a facial phenotype similar to our patient. OTX2 is involved in ocular developmental defects, and the severity of the ocular phenotype in our patient and the other 14q22-23 deletion patients, suggests this genomic region harbors other gene/s involved in ocular development. BMP4 haploinsufficiency is predicted to contribute to the ocular phenotype on the basis of its expression pattern and observed murine mutant phenotypes. In addition, deletion of BMP4 and SIX6 is likely to contribute to the abnormal pituitary development, and SIX1 deletion may contribute to the ear and other craniofacial features. This indicates that contiguous gene deletion may contribute to the phenotypic features in the 14q22-23 deletion patients.
CMA Chromosome microarray CNV Copy number variant PKD Paroxysmal kinesigenic dyskinesia AIM Chromosome microarray (CMA) can determine copy number variants such as microdeletions or microduplications. Microdeletions of movement disorder genes including epsilon-sarcoglycan (SGCE) and thyroid transcription factor-1 (TITF1) have been described in patients with myoclonus dystonia and benign hereditary chorea respectively. We examined whether CMA is a valuable tool in the investigation of children with suspected genetic movement disorders.METHOD A genetic movement disorder was suspected if there was a positive first-degree family history, or two or more of the following factors: normal or near-normal magnetic resonance imaging, negative history of brain injury, and negative investigations for metabolic disorders. Tic disorders were excluded. Twenty-five patients (18 males, seven females) with a mean age at movement disorder onset of 4 years 5 month (range 1mo-14y) were prospectively recruited with the following primary movement disorders: dystonia (n=10), paroxysmal kinesigenic dyskinesia (n=5), tremor (n=4), chorea (n=3), myoclonus (n=2), and paroxysmal non-kinesigenic dyskinesia (n=1). Comorbid associated features were common, particularly developmental delay or intellectual disability (19 out of 25) and attention-deficit-hyperactivity disorder (six out of 25). CMA was performed using Agilent aCGH 60K array.
Whole genome sequencing (WGS) has the potential to outperform clinical microarrays for the detection of structural variants (SV) including copy number variants (CNVs), but has been challenged by high false positive rates. Here we present ClinSV, a WGS based SV integration, annotation, prioritization, and visualization framework, which identified 99.8% of simulated pathogenic ClinVar CNVs > 10 kb and 11/11 pathogenic variants from matched microarrays. The false positive rate was low (1.5–4.5%) and reproducibility high (95–99%). In clinical practice, ClinSV identified reportable variants in 22 of 485 patients (4.7%) of which 35–63% were not detectable by current clinical microarray designs. ClinSV is available at https://github.com/KCCG/ClinSV.
We report on three male infants with de novo terminal deletions of chromosome 9q34.3. The clinical features are compared to the nine cases described in the literature. Case 1 and 3 were ascertained following the use of subtelomeric FISH to screen for a chromosomal anomaly, case 2 was confirmed by FISH probe following detection of a 9q deletion on standard karyotyping. Deletions in this region result in severe developmental delay, a distinct facial phenotype, cardiac anomalies, obesity, and respiratory failure, which may result in premature death. The delineation of the 9q deletion phenotype will aid diagnosis and genetic counseling as subtelomere FISH screening becomes more widely available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.