BackgroundTo date it has not been possible to obtain a comprehensive 3D assessment of fetal hemodynamics because of the technical challenges inherent in imaging small cardiac structures, movement of the fetus during data acquisition, and the difficulty of fusing data from multiple cardiac cycles when a cardiac gating signal is absent. Here we propose the combination of volumetric velocity-sensitive cardiovascular magnetic resonance imaging (“4D flow” CMR) and a specialized animal preparation (catheters to monitor fetal heart rate, anesthesia to immobilize mother and fetus) to examine fetal sheep cardiac hemodynamics in utero.MethodsTen pregnant Merino sheep underwent surgery to implant arterial catheters in the target fetuses. Anesthetized ewes underwent 4D flow CMR with acquisition at 3 T for fetal whole-heart coverage with 1.2–1.5 mm spatial resolution and 45–62 ms temporal resolution. Flow was measured in the heart and major vessels, and particle traces were used to visualize circulatory patterns in fetal cardiovascular shunts. Conservation of mass was used to test internal 4D flow consistency, and comparison to standard 2D phase contrast (PC) CMR was performed for validation.ResultsStreaming of blood from the ductus venosus through the foramen ovale was visualized. Flow waveforms in the major thoracic vessels and shunts displayed normal arterial and venous patterns. Combined ventricular output (CVO) was 546 mL/min per kg, and the distribution of flows (%CVO) were comparable to values obtained using other methods. Internal 4D flow consistency across 23 measurement locations was established with differences of 14.2 ± 12.1%. Compared with 2D PC CMR, 4D flow showed a strong correlation (R2 = 0.85) but underestimated flow (bias = − 21.88 mL/min per kg, p < 0.05).ConclusionsThe combination of fetal surgical preparation and 4D flow CMR enables characterization and quantification of complex flow patterns in utero. Visualized streaming of blood through normal physiological shunts confirms the complex mechanism of substrate delivery to the fetal heart and brain. Besides offering insight into normal physiology, this technology has the potential to qualitatively characterize complex flow patterns in congenital heart disease phenotypes in a large animal model, which can support the development of new interventions to improve outcomes in this population.Electronic supplementary materialThe online version of this article (10.1186/s12968-018-0512-5) contains supplementary material, which is available to authorized users.
We characterize a compact MR-compatible PET insert for simultaneous preclinical PET/MRI. Although specifically designed with the strict size constraint to fit inside the 114-mm inner diameter of the BGA-12S gradient coil used in the BioSpec 70/20 and 94/20 series of small-animal MRI systems, the insert can easily be installed in any appropriate MRI scanner or used as a stand-alone PET system. The insert consists of a ring of 16 detector-blocks each made from depth-of-interaction-capable dual-layer-offset arrays of cerium-doped lutetium-yttrium oxyorthosilicate crystals read out by silicon photomultiplier arrays. Scintillator crystal arrays are made from 22 × 10 and 21 × 9 crystals in the bottom and top layers, respectively, with respective layer thicknesses of 6 and 4 mm, arranged with a 1.27-mm pitch, resulting in a useable field of view 28 mm long and about 55 mm wide. Spatial resolution ranged from 1.17 to 1.86 mm full width at half maximum in the radial direction from a radial offset of 0-15 mm. With a 300- to 800-keV energy window, peak sensitivity was 2.2% and noise-equivalent count rate from a mouse-sized phantom at 3.7 MBq was 11.1 kcps and peaked at 20.8 kcps at 14.5 MBq. Phantom imaging showed that features as small as 0.7 mm could be resolved. F-FDG PET/MR images of mouse and rat brains showed no signs of intermodality interference and could excellently resolve substructures within the brain. Because of excellent spatial resolvability and lack of intermodality interference, this PET insert will serve as a useful tool for preclinical PET/MR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.