The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.
During the last fifteen years, miniaturised paraffin actuation has evolved through the need of a simple actuation principle, still able to deliver large strokes and high actuation forces at small scales. This is achieved by the large and rather incompressible volume expansion associated with the solid-to-liquid phase transition of paraffin. The common approach has been to encapsulate the paraffin by a stiff surrounding that directs the volume expansion towards a flexible membrane, which deflects in a directed stroke. However, a number of alternative methods have also been used in the literature. The most common applications to this date have been switches, positioning actuators, and microfluidic valves and pumps. This review will treat the historical background, as well as the fundamentals in paraffin actuation, including material properties of paraffin. Besides reviewing the three major groups of paraffin actuator applications; actuators, valves, and pumps, the modelling done on paraffin actuation will be explored. Furthermore, a section focusing on fabrication of paraffin microactuators is also included. The review ends with conclusions and outlook of the field, identifying unexplored potential of paraffin actuation.The final publication is available at Springer via http://dx
Techniques to create three‐dimensional microstructures are still a matter of research, and localized electrodeposition is a promising path to inexpensive free‐form microfabrication in metal. The principle is to put the tip of a needle very close to a conducting substrate submerged in a plating bath, apply typically 4–5 V, and move the tip as the metal deposits. In this paper we report improved deposition control and the benefits of adding ammonia and ammonium formate to nickel plating solutions for enhanced resolution and surface smoothness. A mirror‐smooth 600 μm tall nickel column 3 μm in diameter was built at 4 μm/s. Still higher axial deposition rates could be attained, as well as structure diameters down to 2 μm. The broadening of previously built structures near the one being grown was studied, and the usefulness of an auxilliary electrode was confirmed. The possibility of branching and joining structures was also investigated in order to realize the vision of building structures of arbitrary shapes. © 2000 The Electrochemical Society. All rights reserved.
Stripline split-ring resonator with integrated optogalvanic sample cell.Laser Physics Letters, 11(4) dating and pharmaceutical sciences. However, recent reports show that ICOGS suffers from substantial problems with reproducibility. To qualify ICOGS as an analytical method, more stable and reliable plasma generation and signal detection are needed. In our proposed setup, critical parameters have been improved. We have utilized a stripline split-ring resonator microwave-induced microplasma source to excite and sustain the plasma. Such a microplasma source offers several advantages over conventional ICOGS plasma sources. For example, the stripline split-ring resonator concept employs separated plasma generation and signal detection, which enables sensitive detection at stable plasma conditions. The concept also permits in situ observation of the discharge conditions, which was found to improve reproducibility. Unique to the stripline split-ring resonator microplasma source of in this study, is that the optogalvanic sample cell has been embedded in the device itself. This integration enabled improved temperature control and more stable and accurate signal detection. Significant improvements are demonstrated, including reproducibility, signal-to-noise ratio and precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.