The study, which is based on repetitive bathymetric surveys, assesses changes and effects of one of the most important floods recorded in the Rhône Delta area: bottom morphology and sediment distribution in the Rhône outlet after the December 2003 flood are discussed by comparison between Digital Terrain maps (DTMs) of November 2003 and January 2004.The post-flood morphology shows that the whole of the system is active, mainly in the east. The channel of the Rhône has been hollowed out on the left bank by more than 5 m, the eastern coast of the mouth has retreated 400 m, the mouth-bar has prograded 200 m and the slope of the delta front has increased by 0.19°. The overlay of pre-and post-flood DTMs makes it possible to estimate the total volume deposited in the [0 to −20 m] zone as +7.8 × 10 6 m 3 (i.e. 0.88 m 3 m − 2 ), which corresponds to 4 × 10 6 t of sediment. These values are compared with the average annual volume of 0.47 × 10 6 m 3 yr − 1 of sediment deposited in this zone between 1995 and 2003, as well as the average sediment load estimated at the Arles station (50 km upstream) for this flood event (3.1 × 10 6 t to 5.3 × 10 6 t).The acquisition of bathymetric measurements immediately before and after a major flood allows more than a simple morphological description; in addition, an analysis of the solid load transfer processes towards the prodelta is achievable. Three mechanisms are highlighted. Most of the material eroded in the channel and supplied to the delta front corresponds to fine sediment that drape homogeneously over the pre-flood morphology of the delta front. The transit of the coarsest sediment (primarily sand) is slowed down in the channel of the Rhône: this sediment builds up in relatively small areas, leading to the formation of gullies on the prodelta slope. The gullies have fixed positions and disappear gradually towards the west, following the progressive migration of the active band towards the east. These old features are not reactivated by floods occurring after their formation. During the flood, only a small volume of coarse sediment bypasses through the gullies, and the fine deposits are remobilised rapidly or compacted. Flood input concerns essentially the delta front, which traps 90% of the fluvial solid discharge between 0 and 20 m depth. The coarse prodelta supply is then due mainly to mass movements of unconsolidated material deposited beforehand on the top of the delta front. Consequently, the main nourishment of the prodelta does not occur directly during and/or immediately after a flood event, but is delayed by sediment being temporarily trapped on the delta front.
International audienceThe modern Rhone delta in the Gulf of Lions (NW Mediterranean) is a typical wave-dominated delta that developed after the stabilization of relative sea level following the last deglacial sea-level rise. Similar to most other deltas worldwide, it displays several stacked parasequences and lobes that reflect the complex interaction between accommodation, sediment supply and autogenic processes on the architecture of a wave-dominated delta. The interpretation of a large set of newly acquired very high-resolution seismic and sedimentological data, well constrained by 14 C dates, provides a refined three-dimensional image of the detailed architecture (seismic bounding surfaces, sedimentary facies) of the Rhone subaqueous delta, and allows us to propose a scenario for delta evolution during the last deglaciation and Holocene. The subaqueous delta consists of " parasequence-like " depositional wedges, a few meters to 20–30 m in thickness. These wedges first back-stepped inland toward the NW in response to combined global sea-level rise and overall westward oceanic circulation, at a time when sediment supply could not keep pace with rapid absolute (eustatic) sea-level rise. At the the Younger Dryas-Preboreal transition, more rapid sea-level rise led to the formation of a major flooding surface (equivalent to a wave ravinement surface). After stabilization of global sea level in the mid-Holocene, accommodation became the leading factor controlling delta architecture. An eastward shift of depocenters occurred, probably favoured by higher subsidence rate within the thick Messinian Rhone valley fill. The transition between transgressive (backstepping geometry) and regressive (prograding geometry) (para)sequences resulted in creation of a Maximum Flooding Surface (MFS) that differs from a " classical " MFS described in the literature. It consists of a coarse-grained interval incorporating reworked shoreface material within a silty clay matrix. This distinct lithofacies results from condensation/erosion, which appears as an important process even within supply-dominated deltaic systems, due to avulsion of distributaries. The age of the MFS varies along-strike between ca. 7.8-5.6 kyr cal. BP in relation to the position of depocenters and climatically-controlled sediment supply. The last rapid climate change of the Holocene, the Little Ice Age (1250–1850 AD), had a distinct stratigraphic influence on the architecture and lithofacies of the Rhone subaqueous delta through the progradation of two deltaic lobes. In response to changes in sediment supply linked to 2 rapid climate changes (and to anthropic factors), the Rhone delta evolved from wave-dominated to fluvial dominated, and then wave dominated again
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.