BackgroundGrowth arrest-specific gene 6 (Gas6), a vitamin K-dependent protein interacting with anionic phospholipids and TAM tyrosine kinase receptors, is elevated in plasma of septic patients. Previous studies did not find different levels between survivors and non-survivors at admission because either they included a low number of patients (<50) or a low number of non-survivors (5%).ObjectivesTo determine, in a larger cohort of septic patients comprising an expected number of non-survivors, the performance of the plasma level of Gas6 and its soluble receptor Axl (sAxl) within 24 hours of admission to predict in-ICU mortality.PatientsSeptic adults with or without shock.MethodsGas6 and sAxl were prospectively measured by ELISA at day 0, 3, 7, and then weekly until discharge or death.ResultsWe evaluated 129 septic patients, including 82 with and 47 without shock, with in-ICU mortality rate of 19.4% and in-hospital mortality rate of 26%. Gas6 level was higher in non-survivors than in survivors (238 vs. 167%, P = 0.003); this difference remained constant during the ICU stay. The area under the ROC curve for Gas6 (0.695 [95% CI: 0.58–0.81]) was higher than for sAxl, procalcitonin, CRP, IL-1beta, IL-6 and-alpha, and slightly higher than for IL-8, IL-10, SOFA and APACHEII scores in predicting in-ICU mortality. Considering 249% as a cut-off value, Gas6 measurement had a negative predictive value for mortality of 87%.ConclusionIt seems that Gas6 plasma level within 24 hours of ICU admission may predicts in-ICU mortality in patients with sepsis. If our result are confirmed in external validation, Gas6 plasma level measurement could contribute to the identification of patients who may benefit most from more aggressive management.
Immune checkpoint inhibition (ICI) became one of the major breakthroughs in cancer treatment over the past decade and entered into therapy within standard oncohematology practice. ICI has demonstrated impressive response rates as salvage therapy in relapsed/refractory (R/R) classical Hodgkin lymphoma (cHL) and is now being tested as an adjunction to chemotherapy in the frontline settings. CHL exquisite sensitivity to PD-1/PD-L1 axis inhibition relies on a particular biological background. By contrast, non-Hodgkin lymphomas (NHL) have demonstrated heterogeneous response rates using ICI. These observations highlight discrepancies between various types of lymphomas in terms of genetic alterations, immune microenvironment interactions, and disease phenotype. This review aims to focus on cHL immune escape mechanisms, focusing on cHL biological sensitivity to PD-1 blockade. We will summarize the available data issued from clinical trials on ICI in cHL and its safety profile. Going beyond the current use of monoclonal antibodies (mAb) targeting immune checkpoints in clinical practice, we will offer an overview of new combinatory therapeutic perspectives where cHL immunotherapy may be considered.
Autoimmune hemolytic anemia (AIHA) is increasingly recognized as a strong risk factor for venous thrombosis. However, there are currently no guidelines on thromboembolism prevention and management during AIHA. Here, we describe the case of a patient with AIHA and pulmonary embolism and resume the current knowledge on epidemiology, risk factors, treatment, and pathophysiology of thrombosis during AIHA, as well as new therapeutic perspectives to prevent thrombus formation during AIHA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.