Tobacco (Nicotiana tabacum L.) is a species in the large family of the Solanaceae and is important as an agronomic crop and as a model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available that can be used for genome analysis, genetic mapping and breeding. We report here on the development and characterization of 5,119 new and functional microsatellite markers and on the generation of a high-resolution genetic map for the tetraploid tobacco genome. The genetic map was generated using an F2 mapping population derived from the intervarietal cross of Hicks Broadleaf × Red Russian and merges the polymorphic markers from this new set with those from a smaller set previously used to produce a lower density map. The genetic map described here contains 2,317 microsatellite markers and 2,363 loci, resulting in an average distance between mapped microsatellite markers which is less than 2 million base pairs or 1.5 cM. With this new and expanded marker resource, a sufficient number of markers are now available for multiple applications ranging from tobacco breeding to comparative genome analysis. The genetic map of tobacco is now comparable in marker density and resolution with the best characterized genomes of the Solanaceae: tomato and potato.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-011-1578-8) contains supplementary material, which is available to authorized users.
We report the first linkage map of tobacco (Nicotiana tabacum L.) generated through microsatellite markers. The microsatellite markers were predominantly derived from genomic sequences of the Tobacco Genome Initiative (TGI) through bioinformatics screening for microsatellite motives. A total of 684 primer pairs were screened for functionality in a panel of 16 tobacco lines. Of those, 637 primer pairs were functional. Potential parents for mapping populations were evaluated for their polymorphism level through genetic similarity analysis. The similarity analysis revealed that the known groups of tobacco varieties (Burley, Flue-cured, Oriental and Dark) form distinct clusters. A mapping population, based on a cross between varieties Hicks Broad Leaf and Red Russian, and consisting of 186 F2 individuals, was selected for mapping. A total of 282 functional microsatellite markers were polymorphic in this population and 293 loci could be mapped together with the morphological trait flower color. Twenty-four tentative linkage groups spanning 1,920 cM could be identified. This map will provide the basis for the genetic mapping of traits in tobacco and for further analyses of the tobacco genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.