Cuprous oxide (Cu(2)O) and cupric oxide (CuO) nanowires have started playing important roles in energy conversion devices and optoelectronic devices. Although the desired advanced properties have been demonstrated, these materials cannot yet be produced in large-bulk quantities in order to bridge the technological transfer gap for wider use. In this respect, the quest for the most efficient synthesis process which yields not only large quantities but also high quality and advanced material properties continues. This paper gives an extensive review of copper oxide nanowire (NW) synthesis by all methods and routes by which various researchers have obtained their nanomaterial. These methods are critically overviewed, evaluated and compared. Methods of copper oxide NW growth include wet-chemical methods based on pure solution growth, electrochemical and hydrothermal routes as well as thermal and plasma oxidation methods. In terms of advanced nanowire synthesis, the fast thermal method or direct plasma oxidation as well as the combined hybrid wet-chemical method in which copper hydroxide NWs are produced and sequentially transformed by plasma oxidation which produces Cu(2)O NWs are seen as the most promising methods to explore in the near future. These methods not only yield large quantities of NWs, but produce high quality material with advanced properties.
In this review, the weightiest decadal developments of surface-enhanced Raman scattering (SERS) and nanoplasmonic materials in sensing applications are discussed. Today, there are several well-established research directions where plasmonic detection is employed extensively, namely, food and water quality monitoring, viruses, pathogenic bacteria and hazardous toxin investigations for theranostic applications, and explosive substance detection for military and civil protection purposes. A combination of vibrational spectroscopy and surface nanoengineering has gained a reputation as a powerful weapon for rapid and accurate determination of submolecular quantities of nanoanalytes. Signal enhancement achieved by employing various metallic nanoparticles and nanostructures can be amplified significantly due to the electromagnetic field confinement effect. Localized surface plasmon waves, which are responsible for the phenomenon, promote light absorption at nanovolume, generating ‘hot spots’ with an incredibly intense and confined electromagnetic field close to the nanosculptured metallic surface. However, the formation of the hot spot network is heavily dependent on morphology, size, and spatial arrangement of plasmonic nanomaterials. Under optimal excitation conditions, the interaction between the optically induced electromagnetic field in the hot spot region and a probing analyte attached to the nanosculptured metallic substrate enlarges photon scattering cross section, increasing signal intensity by 106–1010. As a result, fast single-molecule vibrational fingerprint recording is possible. This focused review collects recent state-of-the-art developments in nanoplasmonic SERS sensing, highlighting the most efficient surface morphology designs that hold the most promise for future developments.
HIGHLIGHTS • Nitrogen was successfully incorporated in graphene nanowalls (CNWs) using cold gaseous plasma post-treatment and influence of nitrogen concentration and configuration in CNWs on electrical conductivity was demonstrated. • The mechanism of nitrogen incorporation was systematically studied using different characterisation techniques to make a bridge between established DFT theories.
Fungal contamination of surfaces is a global burden, posing a major environmental and public health challenge. A wide variety of antifungal chemical agents are available; however, the side effects of the use of these disinfectants often result in the generation of toxic residues raising major environmental concerns. Herein, atmospheric pressure air plasma generated by a surface barrier discharge (SBD) is presented as an innovative green chemical method for fungal inactivation, with the potential to become an effective replacement for conventional chemical disinfection agents, such as Virkon. Using Aspergillus flavus spores as a target organism, a comparison of plasma based decontamination techniques is reported, highlighting their respective efficiencies and uncovering their underpining inactivation pathways. Tests were performed using both direct gaseous plasma treatment and an indirect treatment using a plasma activated aqueous broth solution (PAB). Concentrations of gaseous ozone and nitrogen oxides were determined with Fourier-transform infrared spectroscopy (FTIR) and Optical emission spectroscopy (OES), whereas hydrogen peroxides, nitrites, nitrates, and pH were measured in PAB. It is demonstrated that direct exposure to the gaseous plasma effluent exhibited superior decontamination efficiency and eliminated spores more effectively than Virkon, a finding attributed to the production of a wide variety of reactive oxygen and nitrogen species within the plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.