Quantum-enhanced optical systems operating within the 2 μm spectral region have the potential to revolutionise emerging applications in communications, sensing and metrology. However, to date, sources of entangled photons have been realised mainly in the near-infrared 700-1550 nm spectral window. Here, using custom-designed lithium niobate crystals for spontaneous parametric down-conversion and tailored superconducting-nanowire single-photon detectors, we demonstrate two-photon interference and polarisation-entangled photon pairs at 2090 nm, i.e. in the mid-infrared and significantly beyond existing technology. These results open the 2 μm window for the development of optical quantum technologies such as quantum key distribution in nextgeneration mid-infrared fibre communications systems and novel Earth-to-satellite communications that exploits reduced atmospheric scattering in a spectral region with a reduced solar background.
We report on the extended infrared single-photon response of niobium nitride superconducting nanowires deposited by atomic layer deposition. The superconducting nanowire single-photon detectors are based on 4.65 nm thick NbN, patterned into 100 nm meanders, and characterized at 2.5 K. We verify single-photon sensitivity from 1310 to 2006 nm with saturated response at shorter wavelengths.
Superconducting nanowire single-photon detectors (SNSPDs) play an important role in emerging optical quantum technologies. We report on advanced nanometric characterization of a high efficiency near infrared SNSPD design based on a low roughness tantalum pentoxide (Ta 2 O 5 )/silicon dioxide (SiO 2 ) distributed Bragg reflector (DBR) cavity structure. We have performed high resolution transmission electron microscopy analysis to verify the smoothness of the DBR. Optical reflectance measurements show excellent correspondence with DBR simulations. We have carried out precision nano-optical photoresponse mapping studies at 940 nm wavelength at T=3.5 K, indicating excellent large area device uniformity (peak efficiency 55% at 100 Hz dark count rate (DCR)) with a full width half maximum timing jitter of 60 ps. With manual fibre coupling with single mode fibre, we achieve a system detection efficiency (SDE) of 57.5% at 940 nm wavelength (100 Hz DCR) at T=2.3 K and a low polarization dependence of 1.20±0.03. For coupling with multimode fibre, we achieve SDE of 90% at 940 nm (200 Hz DCR) at T=2.3 K. These SNSPD devices are promising candidates for use in quantum dot photoluminescence studies and optical quantum technology applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.