This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a freerunning, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime.
We have used an InGaAs/InP single-photon avalanche diode detector module in conjunction with a time-of-flight depth imager operating at a wavelength of 1550 nm, to acquire centimeter resolution depth images of low signature objects at stand-off distances of up to one kilometer. The scenes of interest were scanned by the transceiver system using pulsed laser illumination with an average optical power of less than 600 µW and per-pixel acquisition times of between 0.5 ms and 20 ms. The fiber-pigtailed InGaAs/InP detector was Peltier-cooled and operated at a temperature of 230 K. This detector was used in electrically gated mode with a single-photon detection efficiency of about 26% at a dark count rate of 16 kilocounts per second. The system's overall instrumental temporal response was 144 ps full width at half maximum. Measurements made in daylight on a number of target types at ranges of 325 m, 910 m, and 4.5 km are presented, along with an analysis of the depth resolution achieved.
Conventional imaging systems rely upon illumination light that is scattered or transmitted by the object and subsequently imaged. Ghost-imaging systems based on parametric downconversion use twin beams of position-correlated signal and idler photons. One beam illuminates an object while the image information is recovered from a second beam that has never interacted with the object. In this Letter, we report on a camera-based ghost imaging system where the correlated photons have significantly different wavelengths. Infrared photons at 1550 nm wavelength illuminate the object and are detected by an InGaAs/InP single-photon avalanche diode. The image data are recorded from the coincidently detected, position-correlated, visible photons at a wavelength of 460 nm using a highly efficient, low-noise, photon-counting camera. The efficient transfer of the image information from infrared illumination to visible detection wavelengths and the ability to count single photons allows the acquisition of an image while illuminating the object with an optical power density of only 100 pJ cm −2 s −1 . This wavelengthtransforming ghost-imaging technique has potential for the imaging of light-sensitive specimens or where covert operation is desired. Low-light-level imaging at infrared wavelengths has many applications within both the technological and biological sectors. These applications span covert security systems, the imaging of light-sensitive biological samples, and imaging within semiconductor devices. However, given that the majority of single-photon-sensitive, large-format detector arrays are siliconbased and therefore ineffective at wavelengths greater than 1 μm, the technological difficulties with such applications are readily apparent: crafting a camera with high quantum efficiency and low noise at infrared wavelengths is difficult and expensive.In this Letter, we circumvent the lack of infrared cameras that combine low-noise with single-photon sensitivity by performing the imaging using the so-called "ghost imaging" method. This method utilizes the spatial correlations between photons in the two output beams, signal and idler, generated through the spontaneous parametric down-conversion (SPDC) process [1].In the 1990s, it was shown how the correlations between photons generated through SPDC could be utilized to create imaging systems [2,3]. These ghost-imaging systems rely on the strong position correlations between the beams of signal and idler photons that are produced by the SPDC process [4]. In a ghost-imaging system a transmissive object is placed in the idler beam and the transmitted photons are measured using a single-element, heralding detector. The use of a single-element detector means that measurements of photons that probe the object reveal no spatial information. In parallel to these measurements of the idler photons, a scanning single-element detector measures the corresponding signal photons-but since these signal photons do not interact with the object, again no image is formed. However, although the ...
Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. Optics Express, 21 (4). pp. 5005-5013. ISSN 1094-4087 Copyright © 2013 Optical Society of America A copy can be downloaded for personal non-commercial research or study, without prior permission or chargeThe content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) When referring to this work, full bibliographic details must be given http://eprints.gla.ac.uk/77174/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.