The Miocene epoch (23.03-5.33 Ma) was a time interval of global warmth, relative to today.Continental configurations and mountain topography transitioned toward modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval-the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO 2 , and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO 2 (∼400-600 ppm), the MCO has been suggested as a particularly appropriate analog for future climate scenarios, and for assessing the predictive accuracy of numerical climate models-the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re-interpretation of proxies, which might mitigate the model-data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here, we review the state-of-the-art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modeling studies. Plain Language Summary During the Miocene time period (∼23-5 million years ago),Planet Earth looked similar to today, with some important differences: the climate was generally warmer and highly variable, while atmospheric CO 2 was not much higher. Continental-sized ice sheets were only present on Antarctica, but not in the northern hemisphere. The continents drifted to near their modernday positions, and plants and animals evolved into the many (near) modern species. Scientists study the Miocene because present-day and projected future CO 2 levels are in the same range as those reconstructed for the Miocene. Therefore, if we can understand climate changes and their biotic responses from the Miocene past, we are able to better predict current and future global changes. By comparing Miocene climate reconstructions from fossil and chemical data to climate simulations produced by computer models, scientists are able to test their understanding of the Earth system under higher CO 2 and warmer conditions than those of today. This helps in constraining future warming scenarios for the coming STEINTHORSDOTTIR ET AL.
Abstract. We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, ∼ 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org, last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 ∘C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxies or models in this region. Our aim is that the documentation of the large-scale features and model–data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability, and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols.
The Miocene epoch, spanning 23.03-5.33 Ma, was a dynamic climate of sustained, polar amplified warmth. Miocene atmospheric CO 2 concentrations are typically reconstructed between 300 and 600 ppm and were potentially higher during the Miocene Climatic Optimum (16.75-14.5 Ma). With surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear what processes maintained the much weaker-than-modern equator-to-pole temperature difference. Here, we synthesize several Miocene climate modeling efforts together with available terrestrial and ocean surface temperature reconstructions. We evaluate the range of model-data agreement, highlight robust mechanisms operating across Miocene modeling efforts and regions where differences across experiments result in a large spread in warming responses. Prescribed CO 2 is the primary factor controlling global warming across the ensemble. On average, elements other than CO 2 , such as Miocene paleogeography and ice sheets, raise global mean temperature by ∼2°C, with the spread in warming under a given CO 2 concentration (due to a combination of the spread in imposed boundary conditions and climate feedback strengths) equivalent to ∼1.2 times a CO 2 doubling. This study uses an ensemble of opportunity: models, boundary conditions, and reference data sets represent the state-of-art for the Miocene, but are inhomogeneous and not ideal for a formal intermodel comparison effort. Acknowledging this caveat, this study is nevertheless the first Miocene multi-model, multi-proxy comparison attempted so far. This study serves to take stock of the current progress toward simulating Miocene warmth while isolating remaining challenges that may be well served by community-led efforts to coordinate modeling and data activities within a common analytical framework.Plain Language Summary As human activity continues to increase atmospheric carbon dioxide concentrations, scientists turn to warm intervals in Earth's history to develop insight into the behavior of the climate system under elevated carbon dioxide and temperature. One such interval is the Miocene epoch which has become increasingly relevant as reconstructions of Miocene atmospheric CO 2 concentrations point to values ranging between current concentrations of ∼400 ppm and those projected for the end of this century under Shared Socioeconomic Pathways 3 and 4. In this study, we evaluate the BURLS ET AL.
The Miocene epoch, spanning 23.03-5.33 Ma, was a dynamic climate of sustained, polar amplified warmth. Miocene atmospheric CO 2 concentrations are typically reconstructed between 300 and 600 ppm and were potentially higher during the Miocene Climatic Optimum (16.75-14.5 Ma). With surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear what processes maintained the much weaker-than-modern equator-to-pole temperature difference. Here, we synthesize several Miocene climate modeling efforts together with available terrestrial and ocean surface temperature reconstructions. We evaluate the range of model-data agreement, highlight robust mechanisms operating across Miocene modeling efforts and regions where differences across experiments result in a large spread in warming responses. Prescribed CO 2 is the primary factor controlling global warming across the ensemble. On average, elements other than CO 2 , such as Miocene paleogeography and ice sheets, raise global mean temperature by ∼2°C, with the spread in warming under a given CO 2 concentration (due to a combination of the spread in imposed boundary conditions and climate feedback strengths) equivalent to ∼1.2 times a CO 2 doubling. This study uses an ensemble of opportunity: models, boundary conditions, and reference data sets represent the state-of-art for the Miocene, but are inhomogeneous and not ideal for a formal intermodel comparison effort. Acknowledging this caveat, this study is nevertheless the first Miocene multi-model, multi-proxy comparison attempted so far. This study serves to take stock of the current progress toward simulating Miocene warmth while isolating remaining challenges that may be well served by community-led efforts to coordinate modeling and data activities within a common analytical framework.Plain Language Summary As human activity continues to increase atmospheric carbon dioxide concentrations, scientists turn to warm intervals in Earth's history to develop insight into the behavior of the climate system under elevated carbon dioxide and temperature. One such interval is the Miocene epoch which has become increasingly relevant as reconstructions of Miocene atmospheric CO 2 concentrations point to values ranging between current concentrations of ∼400 ppm and those projected for the end of this century under Shared Socioeconomic Pathways 3 and 4. In this study, we evaluate the BURLS ET AL.
Throughout the last glacial cycle millennial timescale variations in atmospheric CO2 occurred in parallel with perturbations in deep ocean circulation, which were themselves reflected by observable changes in surface conditions across the North Atlantic region. Here we use continuous proxy records to argue that an equivalent relationship has held throughout the last 800 kyr, that is, since before the first occurrence of Heinrich events (strictly defined). Our results highlight the importance of internal climate dynamics in amplifying external (insolation) forcing on the climate system to produce the large amplitude of glacial terminations (deglaciations) during the middle to late Pleistocene. We show that terminations are characterized by an interval of intense ice rafting followed by a subsequent and abrupt shift to anomalously warm surface conditions (with respect to the more gradually evolving background state), which we interpret to reflect an abrupt recovery of deep ocean circulation in the Atlantic. According to our synthesis, this is followed by a period of enhanced (or at least anomalous) overturning lasting thousands of years until equilibrium interglacial conditions are attained and during which atmospheric CO2 is likely to decrease. Our results therefore suggest that deglacial oscillations in ocean circulation can have a lasting influence on early interglacial climate and highlight the transient nature of atmospheric CO2 overshoots associated with the onset of some previous interglacials. Accordingly, we suggest that these intervals should be considered as a part of the deglacial process. This has implications for studies concerned with the evolution of atmospheric CO2 during interglacial periods including the Holocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.