In 2013, the California Independent System Operator published the "duck chart," which shows a significant drop in midday net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in "overgeneration" and curtailed renewable energy, increasing its costs and reducing its environmental benefits. This paper explores the duck chart in detail, examining how much PV might need to be curtailed if additional grid flexibility measures are not taken, and how curtailment rates can be decreased by changing grid operational practices. It finds that under business-as-usual types of assumptions and corresponding levels of grid flexibility in California, solar penetrations as low as 20% of annual energy could lead to marginal curtailment rates that exceed 30%. However, by allowing (or requiring) distributed PV and storage (including new installations that are part of the California storage mandate) to provide grid services, system flexibility could be greatly enhanced. Doing so could significantly reduce curtailment and allow much greater penetration of variable generation resources in achieving a 50% renewable portfolio standard. Overall, the work described in this paper points to the need to fully integrate distributed resources into grid system planning and operations to allow maximum use of the solar resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.