Developmental dyslexia, the most common childhood learning disorder, is highly heritable, and recent studies have identified KIAA0319-Like (KIAA0319L) as a candidate dyslexia susceptibility gene at the 1p36-34 (DYX8) locus. In this experiment, we investigated the anatomical effects of knocking down this gene during rat corticogenesis. Cortical progenitor cells were transfected using in utero electroporation on embryonic day (E) 15.5 with plasmids encoding either: (1) Kiaa0319l shRNA, (2) an expression construct for human KIAA0319L, (3) Kiaa0319l shRNA + KIAA0319L expression construct (rescue), or (4) controls (scrambled Kiaa0319l shRNA or empty expression vector). Mothers were injected with BrdU at either E13.5, E15.5, or E17.5. Disruption of Kiaa0319l function (by knockdown, overexpression, or rescue) resulted in the formation of large nodular periventricular heterotopia in approximately 25% of the rats, and these heterotopia can be seen as early as postnatal day 1. Only a small subset of heterotopic neurons had been transfected, indicating non-cell autonomous effects of the transfection. Most heterotopic neurons were generated in mid- to late-gestation, and laminar markers suggest that they were destined for upper cortical laminæ. Finally, we found that transfected neurons in the cerebral cortex were located in their expected laminæ. These results indicate that KIAA0319L is the fourth of four candidate dyslexia susceptibility genes that is involved in neuronal migration, which supports the association of abnormal neuronal migration with developmental dyslexia.
Pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) dysregulation has been associated with multiple stress-related psychopathologies that may be related to altered hippocampal function. In coherence, PACAP-and PAC1 receptor (ADCYAP1R1)null mice demonstrate changes in hippocampal-dependent behavioral responses, implicating the PACAPergic system function in this structure. Within the hippocampus, the dentate gyrus (DG) may play an important role in discerning the differences between similar contexts, and DG granule cells appear to both highly express PAC1 receptors and receive inputs from PACAP-expressing terminals. Here, we review the evidence from our laboratories and others that PACAP is an important regulator of activity within hippocampal circuits, particularly within the DG. These data are consistent with an increasing literature implicating PACAP circuits in stress-related pathologies such as post-traumatic stress disorder (PTSD) and implicate the hippocampus, and in particular the DG, as a critical site in which PACAP dysregulation can alter stress-related behaviors.
Pituitary adenylate cyclase activating polypeptide acting through its cognate receptors, PAC1, VPAC1, and VPAC2, is a pleiotropic signaling neuropeptide of the vasoactive intestinal peptide/secretin/glucagon family. PACAP has known functions in neuronal growth, development, repair, and central PACAP signaling has acute behavioral consequences. One of the ways in which PACAP may affect neuronal function is through the modulation of intrinsic membrane currents to control neuronal excitability. Here we review evidence of PACAP-dependent modulation of voltage-gated potassium currents, hyperpolarization activated cation currents, calcium currents, and voltage-gated sodium currents. Interestingly, PACAP signaling pathways diverge into parallel pathways to target different ionic currents for modulation, though single pathways are not limited to modulating just one target ionic current. Despite the various targets of modulation, the weight of the evidence suggests that PACAP signaling most commonly leads to a net-increase in neuronal excitability. We discuss possible mechanisms by which PACAP signaling leads to the modulation of intrinsic membrane currents to change behavior.
Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) activation of PAC1 receptors (Adcyap1r1) can significantly increase the excitability of diverse neurons through differential mechanisms. For guinea pig cardiac neurons, the modulation of excitability can be mediated in part by PAC1 receptor plasma membrane G protein-dependent activation of adenylyl cyclase and downstream signaling cascades. By contrast, PAC1 receptor-mediated excitability of hippocampal dentate gyrus granule cells appears independent of membrane delimited AC/cAMP/PKA and PLC/PKC signaling. For both neuronal types, there is mechanistic convergence demonstrating that endosomal PAC1 receptor signaling has prominent roles. In these models, neuronal exposure to Pitstop2 to inhibit β-arrestin/clathrin-mediated PAC1 receptor internalization eliminates PACAP modulation of excitability. β-arrestin is a scaffold for a number of effectors especially MEK/ERK and notably, paradigms that inhibit PAC1 receptor endosome formation and ERK signaling also blunt the PACAP-induced increase in excitability. Detailed PAC1 receptor internalization and endosomal ERK signaling mechanisms have been confirmed in HEK PAC1R-EGFP cells and shown to be long lasting which appear to recapitulate the sustained electrophysiological responses. Thus, PAC1 receptor internalization/endosomal recruitment efficiently and efficaciously activates MEK/ERK signaling and appears to represent a singular and critical common denominator in regulating neuronal excitability by PACAP.
Pituitary adenylate cyclase activating polypeptide (PACAP; ADCYAP1) is a pleiotropic neuropeptide widely distributed in both the peripheral and central nervous systems. PACAP and its specific cognate PAC1 receptor ( ADCYAP1R1) play critical roles in the homeostatic maintenance of multiple physiological and behavioral systems. Notably, maladaptations in the PACAPergic system have been associated with several psychopathologies related to fear and anxiety. PAC1 receptor transcripts are highly expressed in granule cells of the dentate gyrus (DG). Here, we examined the direct effects of PACAP on DG granule cells in brain slices using whole cell patch recordings in current clamp mode. PACAP significantly increased the intrinsic excitability of DG granule cells via PAC1 receptor activation. This increased excitability was not mediated by adenylyl cyclase/cAMP or phospholipase C/PKC activation, but instead via activation of an extracellular signal-regulated kinase (ERK) signaling pathway initiated through PAC1 receptor endocytosis/endosomal signaling. PACAP failed to increase excitability in DG granule cells pretreated with the persistent sodium current blocker riluzole, suggesting that the observed PACAP effects required this component of the inward sodium current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.