Long chain omega-3 fatty acids (FAs) are effective for reducing plasma triglyceride (TG) levels. At the pharmaceutical dose, 3.4 g/day, they reduce plasma TG by about 25-50% after one month of treatment, resulting primarily from the decline in hepatic very low density lipoprotein (VLDL-TG) production, and secondarily from the increase in VLDL clearance. Numerous mechanisms have been shown to contribute to the TG overproduction, but a key component is an increase in the availability of FAs in the liver. The liver derives FAs from three sources: diet (delivered via chylomicron remnants), de novo lipogenesis, and circulating non-esterified FAs (NEFAs). Of these, NEFAs contribute the largest fraction to VLDL-TG production in both normotriglyceridemic subjects and hypertriglyceridemic, insulin resistant patients. Thus reducing NEFA delivery to the liver would be a likely locus of action for fish oils (FO). The key regulator of plasma NEFA is intracellular adipocyte lipolysis via hormone sensitive lipase (HSL), which increases as insulin sensitivity worsens. FO counteracts intracellular lipolysis in adipocytes by suppressing adipose tissue inflammation. In addition, FO increases extracellular lipolysis by lipoprotein lipase (LpL) in adipose, heart and skeletal muscle and enhances hepatic and skeletal muscle β-oxidation which contributes to reduced FA delivery to the liver. FO could activate transcription factors which control metabolic pathways in a tissue specific manner regulating nutrient traffic and reducing plasma TG.
Hypoalbuminemia is the most powerful predictor of mortality in end-stage renal disease. Since protein-calorie malnutrition can decrease albumin synthesis it is assumed that hypoalbuminemia results principally from malnutrition in these patients, but albumin synthesis may also be decreased as part of the acute-phase response, and hypoalbuminemia can also result from redistribution of albumin pools or from albumin losses. We measured albumin synthesis, fractional catabolic rate, and distribution from the turnover of [125I] human albumin in six hemodialysis patients with plasma albumin less than 35 mg/ml and in six patients with plasma albumin greater than 40 mg/ml. Patients with liver disease, HIV, or other infection were excluded. Both groups were maintained with high-flux polysulfone dialyzers for more than three months. Kt/Vurea and PCR were measured during each dialysis (N = 12 to 18/patient). A four-day calorie and protein intake was determined by dietary history and long-term nutritional status was determined anthropometrically. Measured variables included serum urea, creatinine, transferrin, and the positive acute-phase proteins alpha 2- macroglobulin, C-reactive protein, ferritin, and IGF-1. Albumin synthesis was significantly reduced in the low albumin group. There were no differences in dietary intake, body composition, PCR, BUN, creatinine, or Kt/Vurea. Plasma albumin concentration correlated negatively with ferritin, C-reactive protein and alpha 2-macroglobulin. Albumin synthesis rate correlated negatively with both alpha 2-macroglobulin and Kt/Vurea. Both plasma albumin concentration and synthesis rate correlated positively with IGF-1, and both were independent of PCR and all other nutrition-related variables.(ABSTRACT TRUNCATED AT 250 WORDS)
Background— Omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) from fish oil ameliorate cardiovascular diseases. However, little is known about the effects of ω-3 polyunsaturated fatty acids on cardiac fibrosis, a major cause of diastolic dysfunction and heart failure. The present study assessed the effects of ω-3 polyunsaturated fatty acids on cardiac fibrosis. Methods and Results— We assessed left ventricular fibrosis and pathology in mice subjected to transverse aortic constriction after the consumption of a fish oil or a control diet. In control mice, 4 weeks of transverse aortic constriction induced significant cardiac dysfunction, cardiac fibrosis, and cardiac fibroblast activation (proliferation and transformation into myofibroblasts). Dietary supplementation with fish oil prevented transverse aortic constriction–induced cardiac dysfunction and cardiac fibrosis and blocked cardiac fibroblast activation. In heart tissue, transverse aortic constriction increased active transforming growth factor-β1 levels and phosphorylation of Smad2. In isolated adult mouse cardiac fibroblasts, transforming growth factor-β1 induced cardiac fibroblast transformation, proliferation, and collagen synthesis. Eicosapentaenoic acid and docosahexaenoic acid increased cyclic GMP levels and blocked cardiac fibroblast transformation, proliferation, and collagen synthesis. Eicosapentaenoic acid and docosahexaenoic acid blocked phospho-Smad2/3 nuclear translocation. DT3, a protein kinase G inhibitor, blocked the antifibrotic effects of eicosapentaenoic acid and docosahexaenoic acid. Eicosapentaenoic acid and docosahexaenoic acid increased phosphorylated endothelial nitric oxide synthase and endothelial nitric oxide synthase protein levels and nitric oxide production. Conclusion— Omega-3 fatty acids prevent cardiac fibrosis and cardiac dysfunction by blocking transforming growth factor-β1–induced phospho-Smad2/3 nuclear translocation through activation of the cyclic GMP/protein kinase G pathway in cardiac fibroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.