Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3 in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3 for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package.
Englacial hydrology plays an important role in routing surface water to the glacier's bed and it consequently affects the glacier's dynamics. However, it is often difficult to observe englacial conduit conditions on temperate glaciers because of their short-lived nature. We acquired repeated active surface seismic data over the Rhone Glacier, Switzerland to monitor and characterise englacial conduit conditions. Amplitude-versus-angle analysis suggested that the englacial conduit is water filled and between 0.5 and 4 m thick. A grid of GPR profiles, acquired during the 2018 melt season, showed the englacial conduit network persisting and covering ~ 14,000 m2. In late summer 2018, several boreholes were drilled into the conduit network. We observed generally stable water pressure, but there were also short sudden increases. A borehole camera provided images of a fast flowing englacial stream transporting sediment through the conduit. From these observations, we infer that the englacial conduit network is fed by surface meltwater and morainal streams. The surface and morainal streams merge together, enter the glacier subglacially and flow through subglacial channels along the flank. These subglacial channels flow into highly efficient englacial conduits traversing the up-glacier section of the overdeepening before connecting with the subglacial drainage system.
Abstract. Englacial conduits act as water pathways to feed surface meltwater into the subglacial drainage system. A change of meltwater into the subglacial drainage system can alter the glacier's dynamics. Between 2012 and 2019, repeated 25 MHz ground-penetrating radar (GPR) surveys were carried out over an active englacial conduit network within the ablation area of the temperate Rhonegletscher, Switzerland. In 2012, 2016, and 2017 GPR measurements were carried out only once a year, and an englacial conduit was detected in 2017. In 2018 and 2019 the repetition survey rate was increased to monitor seasonal variations in the detected englacial conduit. The resulting GPR data were processed using an impedance inversion workflow to compute GPR reflection coefficients and layer impedances, which are indicative of the conduit's infill material. The spatial and temporal evolution of the reflection coefficients also provided insights into the morphology of the Rhonegletscher's englacial conduit network. During the summer melt seasons, we observed an active, water-filled, sediment-transporting englacial conduit network that yielded large negative GPR reflection coefficients (<-0.2). The GPR surveys conducted during the summer provided evidence that the englacial conduit was 15–20 m±6 m wide, ∼0.4m±0.35m thick, ∼250m±6m long with a shallow inclination (2∘), and having a sinusoidal shape from the GPR data. We speculate that extensional hydraulic fracturing is responsible for the formation of the conduit as a result of the conduit network geometry observed and from borehole observations. Synthetic GPR waveform modelling using a thin water-filled conduit showed that a conduit thickness larger than 0.4 m (0.3× minimum wavelength) thick can be correctly identified using 25 MHz GPR data. During the winter periods, the englacial conduit no longer transports water and either physically closed or became very thin (<0.1 m), thereby producing small negative reflection coefficients that are caused by either sediments lying within the closed conduit or water within the very thin conduit. Furthermore, the englacial conduit reactivated during the following melt season at an identical position as in the previous year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.