Social stressors, like other stressors, are powerful activators of the sympathoadrenomedullary system. Differential housing (single vs. group) and social defeat of rats is known to alter the activity of catecholamine-synthesizing enzymes in the medulla. The present studies examined the effect of 70 days of triad (3 rats per large cage) and individual housing of male rats on adrenal mRNA levels of tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT) and on TH protein levels. Behavioral ratings carried out at the triad formation indicated that dominant rats exhibited mostly offensive aggressive behaviors. By contrast, subordinate rats expressed primarily defensive behaviors, while the subdominant rats displayed intermediate levels of these behaviors. Overall, compared with single housing, triad housing resulted in lower gene expression for TH, DBH and PNMT and lower TH protein in the adrenals. Within triads, gene expression for these enzymes and TH protein concentration were higher in subordinate compared with dominant and subdominant rats. The dominant rats tended to have the lowest gene expression of these enzymes. These data indicate that in rodents, individual housing and a subject’s social rank have a differential impact on the regulation of catecholamine biosynthesis already during the process of gene expression of catecholamine biosynthetic enzymes in the adrenals.
These behavioral, physiological and endocrine changes are relatively consistent with previous findings with agonists and antagonists for the NOP receptor and, taken together, suggest that ASO-induced downregulation of the NOP receptor is an effective method for studying the N/OFQ system.
Most alcohol researchers do not address the effects of intoxication on the sympatho-adrenomedullary system response to stressful situations. We previously determined that rats consuming nearly 9 g ethanol (EtOH) per kg body weight per day in liquid diet form for 1 week increased adrenal gene expression of enzymes for catecholamine synthesis that was further elevated by acute IMMO. We hypothesized that the response to chronic mild stressors would also be altered after consumption of lower concentrations of EtOH in drinking water. Two experiments were conducted: 10% w/v for 4 weeks or 6% w/v for 7 weeks +/- wire mesh restraint (WMR). These were compared with ad libitum (adlib) and pair-fed control rats. Adrenal gene expression of catecholamine synthesizing enzymes was assayed. Tyrosine hydroxylase gene expression was elevated 80% to 90% by alcohol consumption in both experiments (P < 0.001) compared with adlib control rats. Dopamine betab-hydroxylase and phenylethanolamine-N-methyl transferase gene expressions were unaffected by 10% alcohol (P > 0.05) but were increased by 6% alcohol (P < 0.01). WMR decreased already elevated gene expression of all three enzymes. Pair feeding to 6% EtOH drinkers also increased gene expression for the three enzymes but was decreased by WMR, although not to levels of adlib rats. Increased gene expression for adrenal synthesis of catecholamines in response to repeated alcohol consumption increases the likelihood that the subject can respond physiologically to acute or chronic stress. This may have life-saving consequences in humans and in animals known to consume fermented materials and may contribute to increased aggressive behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.