HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.Distributed under a Creative Commons Attribution -NonCommercial -NoDerivatives| 4.0International License
Thirty-one melon accessions were screened for resistance to the begomoviruses Melon chlorotic mosaic virus (MeCMV) and Tomato leaf curl New Delhi virus (ToLCNDV). Five accessions presented nearly complete resistance to both viruses. Accession IC-274014, showing the highest level of resistance to both viruses, was crossed with the susceptible cultivar Védrantais. The F1, F2, F3/F4, and both backcross progenies were mechanically inoculated with MeCMV. Plants without symptoms or virus detection by enzyme-linked immunosorbent assay and/or PCR were considered as resistant. The segregations were compatible with two recessive and one dominant independent genes simultaneously required for resistance. Inheritance of resistance to ToLCNDV in the F2 was best explained by one recessive gene and two independent dominant genes simultaneously required. Some F3 and F4 families selected for resistance to MeCMV also were resistant to ToLCNDV, suggesting that common or tightly linked genes were involved in resistance to both viruses. We propose the names begomovirus resistance-1 and Begomovirus resistance-2 for these genes (symbols bgm-1 and Bgm-2). Resistance to MeCMV in IC-274014 was controlled by bgm-1, Bgm-2, and the recessive gene melon chlorotic mosaic virus resistance (mecmv); resistance to ToLCNDV was controlled by bgm-1, Bgm-2, and the dominant gene Tomato leaf curl New Delhi virus resistance (Tolcndv).
Cucumber mosaic virus is one of the most prevalent viruses in Tunisian pepper crops, where it has been detected in 68% of plants developing mosaic symptoms, making it essential to characterize the molecular and biological properties of local CMV populations. Two hundred and seventy-eight isolates collected in the late 1990s, 2006 and 2008-2010 were characterized genetically. Isolates belonging to the three phylogenetic subgroups of CMV (IA, IB and II) were detected, but surprisingly, 90% of the isolates were reassortants between subgroups IA and IB, with two predominant haplotypes, IB-IA-IA and IB-IA-IB (nomenclature according to the subgrouping of the three genomic RNAs). The IB-IA-IA haplotype was present in all regions surveyed, while IB-IA-IB was observed only in northern Tunisia. This situation was unexpected, because CMV reassortants were previously thought to be counterselected in nature, and this raises the questions of the origin of IB strains in Tunisia and of the widespread distribution of these two reassortant types. Phylogenetic studies revealed low diversity within haplotypes, whatever the locality or the year of sampling. However, analysis of haplotype frequencies revealed a high genetic differentiation between CMV populations, which was better explained by the localities of sampling than by years. Geographic distances affected the differentiation of CMV populations, mainly between north and central Tunisia. When tested against a polygenic resistance to CMV movement in pepper, 55 of 57 isolates tested were able to break the resistance, indicating that this resistance would not be useful for controlling CMV in Tunisian pepper fields.
Several potyviruses affect lettuce (Lactuca sativa) and chicory (Cichorium spp.) crops worldwide and are important constraints for production because of the direct losses that they induce and/or because of their seed transmission. Here, the molecular and biological properties are described of two potyviruses that were recently isolated from lettuce plants showing mosaic or strong necrotic symptoms in an experimental field in southeastern France. The first potyvirus belongs to the species Endive necrotic mosaic virus and is present in a large number of wild plant species, especially Tragopogon pratensis. It is unable to infect lettuce cultivars with a resistance to Turnip mosaic virus that is present in many European cultivars and probably conferred by the Tu gene. The second potyvirus belongs to the tentative species lettuce Italian necrotic virus and was not observed in wild plants. It infected all tested lettuce cultivars. Wild accessions of Lactuca serriola, Lactuca saligna, Lactuca virosa and Lactuca perennis were identified as resistant to one or the other potyvirus and could be used for resistance breeding in lettuce. No resistance against these two potyviruses was observed in the tested Cichorium endivia cultivars. In contrast, all tested Cichorium intybus cultivars or accessions were resistant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.