Managing endangered species in fragmented landscapes requires estimating dispersal rates between populations over contemporary timescales. Here, we developed a new method for quantifying recent dispersal using genetic pedigree data for close and distant kin. Specifically, we describe an approach that infers missing shared ancestors between pairs of kin in habitat patches across a fragmented landscape. We then applied a stepping-stone model to assign unsampled individuals in the pedigree to probable locations based on minimizing the number of movements required to produce the observed locations in sampled kin pairs. Finally, we used all pairs of reconstructed parent-offspring sets to estimate dispersal rates between habitat patches under a Bayesian model. Our approach measures connectivity over the timescale represented by the small number of generations contained within the pedigree and so is appropriate for estimating the impacts of recent habitat changes due to human activity. We used our method to estimate recent movement between newly discovered populations of threatened Eastern Massasauga rattlesnakes (Sistrurus catenatus) using data from 2996 RAD-based genetic loci. Our pedigree analyses found no evidence for contemporary connectivity between five genetic groups, but, as validation of our approach, showed high dispersal rates between sample sites within a single genetic cluster. We conclude that these five genetic clusters of Eastern Massasauga rattlesnakes have small numbers of resident snakes and are demographically isolated conservation units. More broadly, our methodology can be widely applied to determine contemporary connectivity rates, independent of bias from shared genetic similarity due to ancestry that impacts other approaches.
Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Until recently, Bd was thought to be the only Batrachochytrium species that infects amphibians; however a newly described species, Batrachochytrium salamandrivorans (Bs), is linked to die-offs in European fire salamanders (Salamandra salamandra). Little is known about the distribution, host range, or origin of Bs. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (Cryptobranchus alleganiensis alleganiensis), for the presence of Bs and Bd. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. Bs was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0–0.04). Bd was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34), representing all four states. All positive samples had low loads of Bd zoospores (12.7 ± 4.9 S.E.M. genome equivalents) compared to other Bd susceptible species. More research is needed to determine the impact of Batrachochytrium infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of Bs in the United States, and is consistent with another, which failed to detect Bs in the U.S. Knowledge about the distribution, host-range, and origin of Bs may help control the spread of this pathogen, especially to regions of high salamander diversity, such as the eastern United States.
Traditional surveys for small mammals and herpetofauna require intensive field effort because these taxa are often difficult to detect. Field surveys are further hampered by dynamic environmental conditions and dense vegetative cover, which are both attributes of biodiverse wet meadow ecosystems. Camera traps may be a solution, but commonly used passive infrared game cameras face difficulties photographing herpetofauna and small mammals. The Adapted-Hunt Drift Fence Technique (AHDriFT) is a camera trap and drift fence system designed to overcome traditional limitations, but has not been extensively evaluated. We deployed 15 Y-shaped AHDriFT arrays (three cameras per array) in northern Ohio wet meadows from March 10 to October 5, 2019. Equipment for each array cost approximately US$1,570. Construction and deployment of each array took about three hours, with field servicing requiring 15 minutes per array. Arrays proved durable under wind, ice, snow, flooding and heat. Processing two-weeks of images of 45 cameras averaged about 13 person-hours. We obtained 9,018 unique-capture events of 41 vertebrate species comprised of 5 amphibians, 13 reptiles (11 snakes), 16 mammals and 7 birds. We imaged differing animal size classes ranging from invertebrates to weasels. We assessed detection efficacy using expected biodiversity baselines. We determined snake communities from three years of traditional surveys and possible small mammal and amphibian biodiversity from prior observations and species ranges and habitat requirements. We cumulatively detected all amphibians and 92% of snakes and small mammals that we expected to be present. We also imaged four mammal and two snake species where they were not previously observed. However, capture consistency was variable by taxa and species, and low-mobility species or species in low densities may not be detected. In its current design, AHDriFT proved to be effective for terrestrial vertebrate biodiversity surveying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.