We present the task of predicting individual well-being, as measured by a life satisfaction scale, through the language people use on social media. Well-being, which encompasses much more than emotion and mood, is linked with good mental and physical health. The ability to quickly and accurately assess it can supplement multi-million dollar national surveys as well as promote whole body health. Through crowd-sourced ratings of tweets and Facebook status updates, we create message-level predictive models for multiple components of well-being. However, well-being is ultimately attributed to people, so we perform an additional evaluation at the user-level, finding that a multi-level cascaded model, using both message-level predictions and userlevel features, performs best and outperforms popular lexicon-based happiness models. Finally, we suggest that analyses of language go beyond prediction by identifying the language that characterizes well-being.
The language used in tweets from 1,300 different US counties was found to be predictive of the subjective well-being of people living in those counties as measured by representative surveys. Topics, sets of co-occurring words derived from the tweets using LDA, improved accuracy in predicting life satisfaction over and above standard demographic and socio-economic controls (age, gender, ethnicity, income, and education). The LDA topics provide a greater behavioural and conceptual resolution into life satisfaction than the broad socio-economic and demographic variables. For example, tied in with the psychological literature, words relating to outdoor activities, spiritual meaning, exercise, and good jobs correlate with increased life satisfaction, while words signifying disengagement like ’bored’ and ’tired’ show a negative association.
People vary widely in their temporal orientation-how often they emphasize the past, present, and future-and this affects their finances, health, and happiness. Traditionally, temporal orientation has been assessed by self-report questionnaires. In this paper, we develop a novel behavior-based assessment using human language on Facebook. We first create a past, present, and future message classifier, engineering features and evaluating a variety of classification techniques. Our message classifier achieves an accuracy of 71.8%, compared with 52.8% from the most frequent class and 58.6% from a model based entirely on time expression features. We quantify a users' overall temporal orientation based on their distribution of messages and validate it against known human correlates: conscientiousness, age, and gender. We then explore social scientific questions, finding novel associations with the factors openness to experience, satisfaction with life, depression, IQ, and one's number of friends. Further, demonstrating how one can track orientation over time, we find differences in future orientation around birthdays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.