Ni‐rich cathode materials provide high energy density, but their structural and surface instability limits their cyclability and thermal stability. As one of the approaches to mitigate this problem, cathode materials comprising Ni‐rich high‐capacity core wrapped in Mn‐rich multiple shells are produced successfully. In contrast to the conventional batch‐type process for concentration‐gradient materials, a digital‐gradient cascade coprecipitation process described here achieves the improvements in productivity and quality consistency needed to move toward large‐scale manufacturing. The core–multishell cathode materials produced in this manner not only have longer cycle life and improved rate performance compared to homogeneous Ni‐rich cathode materials having the same overall composition, but also show remarkably enhanced thermal stability and low impedance growth characteristics. In a novel attempt to determine the correlation between the mechanical properties of the core–multishell cathode particles and their electrochemical cyclabilities, their breaking force and elasticity were successfully measured using a statistical approach, which indicates that a cathode particle with stable surface composition as well as high breaking force has improved capacity retention and durability. These results guide the realization of long life and high thermal stability in Ni‐rich cathode materials through heterogeneous particle engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.