M-CSF induces PI 3-kinase activation, resulting in reactive oxygen species (ROS) production. Previously, we reported that ROS mediate macrophage colony-stimulating factor (M-CSF)-induced extracellular regulated kinase (Erk) activation and monocyte survival. In this work, we hypothesized that M-CSF-stimulated ROS products modulated Akt1 and p38 activation. Furthermore, we sought to clarify the source of these ROS and the role of ROS and Akt in monocyte/macrophage survival. Macrophages from p47(phox-/-) mice, lacking a key component of the NADPH oxidase complex required for ROS generation, had reduced cell survival and Akt1 and p38 mitogen-activated protein kinase (MAPK) phosphorylation compared with wild-type macrophages in response to M-CSF stimulation, but had no difference in M-CSF-stimulated Erk. To understand how ROS affected monocyte survival and signaling, we observed that NAC and DPI decreased cell survival and Akt1 and p38 MAPK phosphorylation. Using bone marrow-derived macrophages from mice expressing constitutively activated Akt1 (Myr-Akt1) or transfecting Myr-Akt1 constructs into human peripheral monocytes, we concluded that Akt is a positive regulator of monocyte survival. Moreover, the p38 MAPK inhibitor, SB203580, inhibited p38 activity and M-CSF-induced monocyte survival. These findings demonstrate that ROS generated from the NADPH oxidase complex contribute to monocyte/macrophage survival induced by M-CSF via regulation of Akt and p38 MAPK.
We previously reported that activation of the phosphatidylinositol (PI) 3-kinase pathway was important in M-CSF-induced monocyte survival. Because M-CSF also induces activation of the mitogen-activated protein (MAP) kinase extracellular-regulated kinase (Erk), we focused on dissecting the mechanism used by M-CSF to induce Erk activation in human monocytes. We found that, in addition to the MAP/Erk kinase inhibitor PD098059, the PI 3-kinase inhibitors LY294002 and wortmannin both suppressed Erk activation in M-CSF-treated monocytes, suggesting that 3-phosphorylated products of PI 3-kinase played a role in Erk activation. Investigating the biochemical pathways regulated by PI 3-kinase to activate Erk, we found that, in response to M-CSF, normal human monocytes induced reactive oxygen species (ROS), which were suppressed by the PI 3-kinase inhibitor wortmannin but not by the solvent control DMSO or the MAP/Erk kinase inhibitor PD098059. We next found that, in the absence of M-CSF, ROS could induce Erk activation in human monocytes. Exogenous H2O2 induced Erk activation in human monocytes, which was suppressed by exogenous catalase. To determine whether ROS induced by M-CSF played a role in Erk activation, we found that N-acetylcysteine and diphenyleneiodonium both suppressed Erk activation in M-CSF-treated monocytes. Erk activation by M-CSF also seemed to play a role in cellular survival in monocytes. These data suggest that, in M-CSF-stimulated human monocytes, PI 3-kinase products and ROS production play a role in Erk activation and monocyte survival.
Cysteine availability is rate limiting for the synthesis of glutathione, an important antioxidant in the lung. We used rat alveolar epithelial type II cells to study the mechanism of cysteine and cystine uptake. Consistent with carrier-mediated transport, each uptake process was saturable with Michaelis-Menten kinetics and was inhibited at 4°C and by micromolar levels of amino acids or analogs known to be substrates for a specific transporter. A unique system XAG was found that transports cysteine and cystine (as well as glutamate and aspartate, the only substrates previously described for system XAG). We also identified a second Na+-dependent cysteine transporter system, system ASC, and two Na+-independent transporter systems, system xc for cystine and system L for cysteine. In the presence of glutathione at levels measured in rat plasma and alveolar lining fluid, cystine was reduced to cysteine and was transported on systems ASC and XAG, doubling the transport rate. Cysteinylglycine, released from glutathione at the cell surface by γ-glutamyl transpeptidase, also stimulated uptake after reduction of cystine. These findings suggest that, under physiological conditions, cysteine and cystine transport is influenced by the extracellular redox state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.