We used magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to evaluate the effects of boxing on brain structure and cognition in 10 boxers (8 retired, 2 active; mean age = 45.7 years; standard deviation [SD] = 9.71) and 9 participants (mean age = 43.44; SD = 9.11) in noncombative sports. Evans Index (maximum width of the anterior horns of the lateral ventricles/maximal width of the internal diameter of the skull) was significantly larger in the boxers (F = 4.52; p = 0.050; Cohen's f = 0.531). Word list recall was impaired in the boxers (F(1,14) = 10.70; p = 0.006; f = 0.84), whereas implicit memory measured by faster reaction time (RT) to a repeating sequence of numbers than to a random sequence was preserved (t = 2.52; p < 0.04). Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) measured by tractography did not significantly differ between groups. However, DTI metrics were significantly correlated with declarative memory (e.g., left ventral striatum ADC with delayed recall, r = -0.74; p = 0.02) and with RT to the repeating number sequence (r = 0.70; p = 0.04) in the boxers. Years of boxing had the most consistent, negative correlations with FA, ranging from -0.65 for the right ventral striatum to -0.92 for the right cerebral peduncle. Years of boxing was negatively related to the number of words consistently recalled over trials (r = -0.74; p = 0.02), delayed recall (r = -0.83; p = 0.003), and serial RT (r = 0.66; p = 0.05). We conclude that microstructural integrity of white matter tracts is related to declarative memory and response speed in boxers and to the extent of boxing exposure. Implications for chronic traumatic encephalopathy are discussed.
High-quality after-school programs devoted to science have the potential to enhance students’ science knowledge and attitudes, which may impact their decisions about pursuing science-related careers. Due to the unique nature of these informal learning environments, an understanding of the relationships among aspects of students’ content knowledge acquisition and attitudes toward science may aid in the development of effective science-related interventions. We investigated the impact of a semester-long after-school intervention utilizing an inquiry-based infectious diseases curriculum (designed for use after-school) on 63 urban students’ content knowledge and aspects of their attitudes towards science. Content knowledge increased 24.6% from pre- to posttest. Multiple regression analyses indicated suggested that the “self-directed effort” subscale of the Simpson-Troost Attitude Questionnaire - Revised best predicted increases in students’ science content knowledge. The construct “science is fun for me” served as a suppressor effect. These findings suggest that future after-school programs focusing on aspects of attitudes toward science most closely associated with gains in content knowledge might improve students’ enthusiasm and academic preparedness for additional science coursework by improving student attitudes towards their perceptions of their self-directed effort.
SUMMARY
Advances in therapeutic neuromodulation devices have enabled concurrent stimulation and electrophysiology in the central nervous system. However, stimulation artifacts often obscure the sensed underlying neural activity. Here, we develop a method, termed Period-based Artifact Reconstruction and Removal Method (PARRM), to remove stimulation artifacts from neural recordings by leveraging the exact period of stimulation to construct and subtract a high-fidelity template of the artifact. Benchtop saline experiments, computational simulations, five unique
in vivo
paradigms across animal and human studies, and an obscured movement biomarker are used for validation. Performance is found to exceed that of state-of-the-art filters in recovering complex signals without introducing contamination. PARRM has several advantages: (1) it is superior in signal recovery; (2) it is easily adaptable to several neurostimulation paradigms; and (3) it has low complexity for future on-device implementation. Real-time artifact removal via PARRM will enable unbiased exploration and detection of neural biomarkers to enhance efficacy of closed-loop therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.