No abstract
Supercritical carbon dioxide (SCO2) Brayton cycles have the potential to offer improved thermal-to-electric conversion efficiency for utility scale electricity production. These cycles have generated considerable interest in recent years because of this potential and are being considered for a range of applications, including nuclear and concentrating solar power (CSP). Two promising SCO2 power cycle variations are the simple Brayton cycle with recuperation and the recompression cycle. The models described in this paper are appropriate for the analysis and optimization of both cycle configurations under a range of design conditions. The recuperators in the cycle are modeled assuming a con stant heat exchanger conductance value, which allows for computationally efficient opti mization o f the cycle's design parameters while accounting for the rapidly varying fluid properties of carbon dioxide near its critical point. Representing the recuperators using conductance, rather than effectiveness, allows for a more appropriate comparison among design-point conditions because a larger conductance typically corresponds more directly to a physically larger and higher capital cost heat exchanger. The model is used to explore the relationship between recuperator size and heat rejection temperature of the cycle, specifically in regard to maximizing thermal efficiency. The results presented in this paper are normalized by net power output and may be applied to cycles of any size. Under the design conditions considered for this analysis, results indicate that increasing the design high-side (compressor outlet) pressure does not always correspond to higher cycle thermal efficiency. Rather, there is an optimal compressor outlet pressure that is dependent on the recuperator size and operating temperatures of the cycle and is typi cally in the range o f30-35 MPa. Model results also indicate that the efficiency degrada tion associated with warmer heat rejection temperatures (e.g., in dry-cooled applications) are reduced by increasing the compressor inlet pressure. Because the opti mal design of a cycle depends upon a number of application-specific variables, the model presented in this paper is available online and is envisioned as a building block for more complex and specific simulations.
Active magnetic regenerator refrigeration (AMRR) systems are an environmentally attractive space cooling and refrigeration alternative that do not use a fluorocarbon working fluid. Two recent developments have made AMRRs appear possible to implement in the near-term. A rotary regenerator bed utilizing practical and affordable permanent magnets has been demonstrated to achieve acceptable COP. Concurrently, families of magnetocaloric material alloys with adjustable Curie temperatures have been developed. Using these materials it is possible to construct a layered regenerator bed that can achieve a high magnetocaloric effect across its entire operating range, resulting in an improved COP.There is currently no tool capable of predicting the performance of a layered AMRR. This project provides a numerical model that predicts the practical limits of these systems for use in space conditioning and refrigeration applications. The model treats the regenerator bed as a one dimensional matrix of magnetic material with a spatial variation in Curie temperature and therefore magnetic properties. The matrix is subjected to a spatially and temporally varying magnetic field and fluid mass flow. The variation of these forcing functions is based on the implementation of a rotating, multiple bed configuration. The numerical model is solved using a fully implicit (in time and space) discretization of the governing energy equations. The nonlinear aspects of the governing equations (e.g., fluid and magnetic property variations) are handled using a relaxation technique.The model is used to optimize AMRR applications by varying model inputs such as matrix material, fluid mass flow rate, working fluid, reservoir temperatures, and the variation of the Curie temperature across the bed. The preliminary model has been verified qualitatively using simple cycle parameters and constant property materials and quantitatively by comparing the results with prior solutions to the regenerator governing equations in the limits of constant properties and no magnetocaloric effect. A second goal of this project is to create a cost estimate for a future project that will design, build, and test a prototype AMRR to be used to verify the numerical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.