There has been an increasing use of functional magnetic resonance imaging (fMRI) by the neuroscience community to examine differences in functional connectivity between normal control groups and populations of interest. Understanding the reliability of these functional connections is essential to the study of neurological development and degenerate neuropathological conditions. To date, most research assessing the reliability with which resting-state functional connectivity characterizes the brain’s functional networks has been on scans between 3 and 11 min in length. In our present study, we examine the test–retest reliability and similarity of resting-state functional connectivity for scans ranging in length from 3 to 27 min as well as for time series acquired during the same length of time but excluding half the time points via sampling every second image. Our results show that reliability and similarity can be greatly improved by increasing the scan lengths from 5 min up to 13 min, and that both the increase in the number of volumes as well as the increase in the length of time over which these volumes was acquired drove this increase in reliability. This improvement in reliability due to scan length is much greater for scans acquired during the same session. Gains in intersession reliability began to diminish after 9–12 min, while improvements in intrasession reliability plateaued around 12–16 min. Consequently, new techniques that improve reliability across sessions will be important for the interpretation of longitudinal fMRI studies.
Resting-state fMRI (rs-fMRI) has been demonstrated to have moderate to high reliability and produces consistent patterns of connectivity across a wide variety of subjects, sites, and scanners. However, there is no one agreed upon method to acquire rs-fMRI data. Some sites instruct their subjects, or patients, to lie still with their eyes closed, while other sites instruct their subjects to keep their eyes open or even fixating on a cross during scanning. Several studies have compared those three resting conditions based on connectivity strength. In our study, we assess differences in metrics of test–retest reliability (using an intraclass correlation coefficient), and consistency of the rank-order of connections within a subject and the ranks of subjects for a particular connection from one session to another (using Kendall's W tests). Twenty-five healthy subjects were scanned at three different time points for each resting condition, twice the same day and another time two to three months later. Resting-state functional connectivity measures were evaluated in motor, visual, auditory, attention, and default-mode networks, and compared between the different resting conditions. Of the networks examined, only the auditory network resulted in significantly higher connectivity in the eyes closed condition compared to the other two conditions. No significant between-condition differences in connectivity strength were found in default mode, attention, visual, and motor networks. Overall, the differences in reliability and consistency between different resting conditions were relatively small in effect size but results were found to be significant. Across all within-network connections, and within default-mode, attention, and auditory networks statistically significant greater reliability was found when the subjects were lying with their eyes fixated on a cross. In contrast, primary visual network connectivity was most reliable when subjects had their eyes open (and not fixating on a cross).
Objective Psychopathy is a personality disorder associated with severely antisocial behavior and a host of cognitive and affective deficits. The neuropathological basis of the disorder has not been clearly established. Cortical thickness is a sensitive measure of brain structure that has been used to identify neurobiological abnormalities in a number of psychiatric disorders. The purpose of this study is to evaluate cortical thickness and corresponding functional connectivity in criminal psychopaths. Method Using T1 MRI data, we computed cortical thickness maps in a sample of adult male prison inmates selected based on psychopathy diagnosis (n=21 psychopathic inmates, n=31 non-psychopathic inmates). Using rest-fMRI data from a subset of these inmates (n=20 psychopathic inmates, n=20 non-psychopathic inmates), we then computed functional connectivity within networks exhibiting significant thinning among psychopaths. Results Relative to non-psychopaths, psychopaths exhibited significantly thinner cortex in a number of regions, including left insula and dorsal anterior cingulate cortex, bilateral precentral gyrus, bilateral anterior temporal cortex, and right inferior frontal gyrus. These neurostructural differences were not due to differences in age, IQ, or substance abuse. Psychopaths also exhibited a corresponding reduction in functional connectivity between left insula and left dorsal anterior cingulate cortex. Conclusions Psychopathy is associated with a distinct pattern of cortical thinning and reduced functional connectivity.
The utility and success of resting-state functional connectivity MRI (rs-fcMRI) depend critically on the reliability of this technique and the extent to which it accurately reflects neuronal function. One challenge is that rs-fcMRI is influenced by various sources of noise, particularly cardiac-and respiratory-related signal variations. The goal of the current study was to evaluate the impact of various physiological noise correction techniques, specifically those that use independent cardiac and respiration measures, on the test-retest reliability of rs-fcMRI. A group of 25 subjects were each scanned at three time points-two within the same imaging session and another 2-3 months later. Physiological noise corrections accounted for significant variance, particularly in blood vessels, sagittal sinus, cerebrospinal fluid, and gray matter. The fraction of variance explained by each of these corrections was highly similar within subjects between sessions, but variable between subjects. Physiological corrections generally reduced intrasubject (between-session) variability, but also significantly reduced intersubject variability, and thus reduced the test-retest reliability of estimating individual differences in functional connectivity. However, based on known nonneuronal mechanisms by which cardiac pulsation and respiration can lead to MRI signal changes, and the observation that the physiological noise itself is highly stable within individuals, removal of this noise will likely increase the validity of measured connectivity differences. Furthermore, removal of these fluctuations will lead to better estimates of average or group maps of connectivity. It is therefore recommended that studies apply physiological noise corrections but also be mindful of potential correlations with measures of interest.
High levels of human immunodeficiency virus (HIV) DNA in peripheral blood mononuclear cells (PBMCs), and specifically within CD14+ blood monocytes, have been found in HIV-infected individuals with neurocognitive impairment and dementia. The failure of highly active antiretroviral therapy (HAART) to eliminate cognitive dysfunction in HIV may be secondary to persistence of HIV-infected PBMCs which cross the blood-brain barrier, leading to perivascular inflammation and neuronal injury. This study assessed brain cortical thickness relative to HIV DNA levels and identified, we believe for the first time, a neuroimaging correlate of detectable PBMC HIV DNA in subjects with undetectable HIV RNA. Cortical thickness was compared between age- and education-matched groups of older (>40 years) HIV-seropositive subjects on HAART who had detectable (N = 9) and undetectable (N = 10) PBMC HIV DNA. Statistical testing revealed highly significant (P < 0.001) cortical thinning associated with detectable HIV DNA. The largest regions affected were in bilateral insula, orbitofrontal and temporal cortices, right superior frontal cortex, and right caudal anterior cingulate. Cortical thinning correlated significantly with a measure of psychomotor speed. The areas of reduced cortical thickness are key nodes in cognitive and emotional processing networks and may be etiologically important in HIV-related neurological deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.