This paper describes the GISS‐E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS‐E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same. Model skill when compared to modern era climatologies is significantly higher than in previous versions. Additionally, updates in forcings have a material impact on the results. In particular, there have been specific improvements in representations of modes of variability (such as the Madden‐Julian Oscillation and other modes in the Pacific) and significant improvements in the simulation of the climate of the Southern Oceans, including sea ice. The effective climate sensitivity to 2 × CO2 is slightly higher than previously at 2.7–3.1°C (depending on version) and is a result of lower CO2 radiative forcing and stronger positive feedbacks.
The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP), an updated and enhanced version of the University of Wisconsin (UWisc) cloud liquid water path (CLWP) climatology, currently provides 29 years (1988–2016) of monthly gridded (1°) oceanic CLWP information constructed using Remote Sensing Systems (RSS) intercalibrated 0.25°-resolution retrievals. Satellite sources include SSM/I, TMI, AMSR-E, WindSat, SSMIS, AMSR-2, and GMI. To mitigate spurious CLWP trends, the climatology is corrected for drifting satellite overpass times by simultaneously solving for the monthly average CLWP and the monthly mean diurnal cycle. In addition to a longer record and six additional satellite products, major enhancements relative to the UWisc climatology include updating the input to version 7 RSS retrievals, correcting for a CLWP bias (based on matchups to clear-sky MODIS scenes), and constructing a total (cloud + rain) liquid water path (TLWP) record for use in analyses of columnar liquid water in raining clouds. Because the microwave emission signal from cloud water is similar to that of precipitation-sized hydrometeors, greater uncertainty in the CLWP record is expected in regions of substantial precipitation. Therefore, the TLWP field can also be used as a quality-control screen, where uncertainty increases as the ratio of CLWP to TLWP decreases. For regions where confidence in CLWP is highest (i.e., CLWP:TLWP > 0.8), systematic differences in MAC CLWP relative to UWisc CLWP range from −15% (e.g., global oceanic stratocumulus decks) to +5%–10% (e.g., portions of the higher latitudes, storm tracks, and shallower convection regions straddling the ITCZ). The dataset is currently hosted at the Goddard Earth Sciences Data and Information Services Center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.